

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 | :exclamation: NOTE - this project has been archived. Please see this blog post [https://nrelabs.io/2021/12/goodbye-for-now/] for more details. :exclamation: |
|—————————————–|

Welcome!

NRE Labs [https://nrelabs.io/] is an open-source project and website for making it easy to learn advanced infrastructure topics like automation. It accomplishes this by using real virtual environments that are provisioned on-demand and presented interactively in your web browser.

[image: _images/nrelabs-large-onblack.png]

It’s powered by the Antidote [https://github.com/nre-learning/antidote] platform, which provides an abstraction to enable curriculum-as-code, meaning all learning materials can be represented as simple text files, stored in a Git repository.

This documentation is intended for people who want to get involved in contributing to the NRE Labs project. If this describes you, please follow the navigation to the left. It’s probably best to follow it from top to bottom. However, if you’re looking for more information about the project in general, head on over to https://nrelabs.io.

This documentation is managed by Gitbook [https://www.gitbook.com/] and the source is hosted in the nrelabs-docs [https://github.com/nre-learning/nrelabs-docs] repository.

Table of contents

	Welcome!

Creating and Contributing

	First Steps

	Open a Pull Request

	Preview Your Changes

	Review and Merge

Other Resources

	Curriculum Quality Standards

	Curriculum Release Process

	NRE Labs Endpoint Images

	Git Tips

	Jupyter Notebooks

	Tips and FAQs

Antidote

	Architecture

	Antidote Services

	Lesson Directory Mapping

	Lesson Networking

	The Antidote CLI

	Create Curriculum Resources

	Validating an Existing Curriculum

	Object Reference

	Images

	Lessons

	Authors

	Stages

	Endpoints

	Presentations

	Connections

	Endpoint Configuration

	Collections

	Development

	Antidote Release Process

Misc

	Tools for Presenters

	Help! I’m Not A Developer!

	(Legacy) Local Preview

Community Resources

TBD

Weekly Standups

TBD

Architecture

Antidote is a platform for providing an on-demand, interactive learning experience that removes all of the usual complexity of setting up your own lab environment, and instead does it all behind the scenes, giving the user a purely web-based portal to interact with.

To make this happen, Antidote plays a role in a broader technology stack, which we’ll overview below:

[image: ../../_images/antidote-architecture.png]

Curriculum

All of the lessons and labs are defined as a standalone curriculum. This model makes it easier for contributors to develop interactive content - they don’t need to be web developers to add content to the NRE Labs experience.

The Antidote platform is built to treat this as a modular component. For instance, the NRE Labs curriculum [https://github.com/nre-learning/nrelabs-curriculum] is the flagship curriculum that is powering the NRE Labs [https://nrelabs.io] site, but it is possible to develop a different curriculum and deploy it on top of Antidote if you wish, in your own environment.

Platform

This is where the custom software components of Antidote live. In particular, Syringe [https://github.com/nre-learning/syringe] provides an upstream API for provisioning lesson resources, then makes the relevant calls to Kubernetes to make sure the relevant, specific compute resources and policies are instantiated. Antidote-web [https://github.com/nre-learning/antidote-web] consumes the API offered by Syringe and is responsible for providing a fully web-based experience for interacting with lesson resources.

Kubernetes

Kubernetes was selected as a common substrate for the Antidote platform for better portability between cloud providers or on-premises deployments. Aside from performance considerations, the underlying cloud or bare-metal infrastructure doesn’t matter; as long as the Antidote platform is deployed on a Kubernetes cluster, that’s all that matters. We recommend running Kubernetes on a bare-metal cluster (while not strictly required), and it must support CNI.

Why not Hosted Kubernetes? There are two main constraints we need to solve before moving into something like GKE:

	There is currently no hosted Kubernetes offering that gives the performance of bare-metal. For the NRE Labs site, this is absolutely necessary.

	The current networking model uses a CNI plugin to make the lesson networking work. All of the existing hosted kubernetes options from the major cloud providers have rather strict networking models and don’t let you bring your own CNI plugin.

Infrastructure

This part is a lot more flexible. While we recommend baremetal for performance reasons, there’s no technical requirement for it. Anywhere you are able to stand up a Kubernetes cluster should work, such as on-prem servers, virtualization environments, cloud (IaaS), etc.

Lesson Resources

Lesson resources will be started over the infrastructure for each connected learner in parallel, isolated, according to the lesson specification.

Lesson resources will typically be inter-networked Kubernetes PODs (containers) which will be available for each learner.

In the following figure, the platform runs the same example lesson for 2 learners in parallel. Each lesson instance contains 2 resources (vqfx1 and linux1), running inside their own Kubernetes “namespaces”. A learner learner may then interact with the resources as dedicated virtual machines, using Web consoles connected via SSH to the right resources.

[image: ../../_images/lessons_hla.png]

	

Antidote Services

The Antidote platform is composed of two services:

	antidote-web

	antidoted

Antidote-Core is where the real work gets done in the Antidote project. It’s responsible for taking in lesson definitions via a YAML file and any configs, scripts, etc used in the lesson, and providing them to the front-end via its API.

Configuring Antidote

Antidote is configured through a YAML file. Since typically Antidote is deployed within Kubernetes, the ideal way to do this is through a ConfigMap.

If you’re using antidote-selfmedicate [https://github.com/nre-learning/antidote-selfmedicate] __to spin up an instance of Antidote yourself, a configuration file is provided for you.

(should have a sample config file in the antidote-core repo, and just link to it here)

Lesson Directory Mapping

There are two ways to get your “stuff” into a lesson:

	Image

	Directory

The decision here depends on the nature of that “stuff”. Is the stuff lesson specific? If so, probably best to put it into the lesson directory. Is it part of the software used within an image? Build it into the endpoint image itself. Also for large files, it’s often better to download it during build time and place it into the image (see Images - Large or Sensitive Files).

Putting your “stuff” (scripts, configs, etc) into a Docker image isn’t the only way to get it into a lesson. At this point, you probably know that Antidote lessons are defined with simple text files, and those files are stored in a Git repository. What you might not know is that when a lesson is instantiated, the full directory that contained that lesson in the Git repository is made available to each lesson endpoint.

Every endpoint that’s instantiated in a lesson has that lesson’s directory mapped to it, and all of its contents. If you just want to run a set of bash or Python commands, or you have a script you wish to show, you likely don’t need to do anything beyond simply placing those files into the lesson directory, or putting a set of commands into a lesson guide.

The utility image, for example, comes preloaded with Python and a bash shell, so can satisfy a lot of use cases here. You simply reference this image when defining an endpoint in your lesson definition, and any files you place in the lesson directory will be made available at runtime to the configured directory. In NRE Labs, this is the /antidote directory.

How do I get my “stuff” into a lesson?

It’s quite rare to have a lesson in mind that doesn’t also include some kind of custom “thing”. This could be a simple script you wrote or downloaded and wish to show it in your lesson, configuration or data files used by an application, or full-blown software you’d like to be installed and running or available within the environment. At the end of the day, your goal is to get this “stuff” into your lesson definition.

In the vast majority of cases, the best way to do this is simply to store those files in your lesson’s directory tree. When your lesson is launched, this lesson directory is mapped via volume to every container that runs in a lesson (at /antidote) so just by having those files in that directory, you’ll have access to them at runtime.

You can also create an Endpoint Image if you’re looking for a more complicated software installation to be available in your lesson.

Lesson Networking

Kubernetes provides a lot of great primitives for managing the individual resources that make up a lesson programmatically, but with one major caveat - the networking model is not very conducive to running network devices. The popular use case for Kubernetes is to deploy simple applications within containers that have a single network interface, eth0.

Since we want to run network devices with multiple network interfaces that are connected together in a dynamic way, we need to do some creative stuff on the back-end to make things work. This is a part of the design that’s still getting worked out, so the documentation on this will be necessarily light until we have a more solid foundation here. However, the TL;DR for how things currently work is as follows:

[image: ../../_images/lessonsnetworking.png]

	Every Kubernetes pod is connected to the “main” network via its eth0 interface. This is nothing new. However, because we’re using Multus [https://github.com/intel/multus-cni], we can provision multiple networks for a pod.

	When we schedule lesson resources, we use affinity rules to ensure all of a lessons’ resources are scheduled onto the same host.

	Depending on the resource type, and the connections described in the lesson definition,

we may also connect additional interfaces to a pod, connected to other networks.

	Since all pods are on the same host, if we need to connect pods together directly, such as in a specified network topology, we can simply create a linux bridge and add the relevant interfaces. In the future, we will do away with affinity rules and use overlay networking instead of the simple linux bridge.

	For security reasons, network access outside the lesson namespace is disabled. All lessons should be totally self-contained and not rely on external resources to properly function when the lesson is being run.

NetworkServiceMesh is an alternative to Multus that may allow us to accomplish the same goal of running multiple network interfaces out of a pod, but without the requirement of using a custom CNI plugin. It also doesn’t directly integrate with whatever CNI plugin IS in use (we ran into some issues with Weave+Multus, which is why we use linux bridges and therefore host affinities). Further exploration is needed, but if NSM satisfies performance and scale considerations, we’re seriously considering moving to it.

DNS in Antidote is provided by Kubernetes [https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/] So, if you want to reach vqfx1, simply query for vqfx1. You will be directed to the corresponding service in your namespace. Note that each lesson + session combination gets its own namespace, which means vqfx1 is locally significant to your lesson specifically.

Syringe

Syringe is where the real work gets done in the Antidote project. It’s responsible for taking in lesson definitions via a YAML file and any configs, scripts, etc used in the lesson, and providing them to the front-end via its API.

Configuring Syringe

Syringe is configured through environment variables. Since Syringe is typically deployed on Kubernetes, the best way to pass these to Syringe is directly in the Pod or Deployment definition.

(...truncated...)

containers:
- name: syringe
 image: antidotelabs/syringe:latest
 imagePullPolicy: Always
 env:
 - name: SYRINGE_CURRICULUM
 value: "/antidote"

(...truncated...)

If you’re using antidote-selfmedicate <https://github.com/nre-learning/antidote-selfmedicate> __to spin up an instance of Antidote and Syringe yourself, note that these are provided in the included Kubernetes manifest [https://github.com/nre-learning/antidote-selfmedicate/blob/master/manifests/syringe-k8s.yaml].

See the tables below for a description of each, as well as information on which are required, and which have default values.

This information is subject to change. In a future version of this documentation, this information will be automatically updated from the source code.

Name	Required?	Default Value	Description
:—	:—	:—	:—
SYRINGE_CURRICULUM	Yes	N/A	Directory where the curriculum is stored
SYRINGE_DOMAIN	No	localhost	Domain where Antidote-web is running. Used to control ingress routing
SYRINGE_GRPC_PORT	No	50099	Port to use for Syringe’s GRPC service
SYRINGE_HTTP_PORT	No	8086	Port to use for the grpc-gateway REST API for Syringe
SYRINGE_TIER	No	local	Controls which lessons Syringe makes available based on lesson metadata. Can be local, ptr, or prod.
SYRINGE_CURRICULUM_LOCAL	No	false	Specify if the curriculum should be pulled from the local filesystem, bypassing the need to clone a repository.
SYRINGE_CURRICULUM_VERSION	No	latest	The version of the curriculum to use. Primarily used for selecting the right tag for curriculum images.
SYRINGE_LESSON_REPO_REMOTE	No	https://github.com/nre-learning/nrelabs-curriculum.git	Git repo from which to clone lessons into lesson endpoint pods
SYRINGE_LESSON_REPO_BRANCH	No	master	Git branch to use in lesson endpoint pods
SYRINGE_LIVELESSON_TTL	No	30	The length of time (in minutes) an inactive lesson is kept available before being cleaned up
SYRINGE_INFLUXDB_URL	No		The URL for the influxdb metrics server
SYRINGE_INFLUXDB_USERNAME	No	admin	The username for the influxdb metrics server
SYRINGE_INFLUXDB_PASSWORD	No	zerocool	The password for the influxdb metrics server
SYRINGE_ALLOW_EGRESS	No	false	Destination directory to use when cloning into lesson endpoint pods
SYRINGE_PRIVILEGED_IMAGES	No		Comma-separated array that specifies which images need privileged access granted to them at runtime

The Syringe Client - syrctl

While Syringe itself is primarily thought of as the orchestrator that sits behind the scenes within Antidote, that’s not all it can do. For each release of Syringe, a totally separate binary is compiled, called syrctl. This is the command-line client for Syringe, and while a popular use case for this is to control the back-end Syringe component(s), there are plenty of things that syrctl can do all on its own.

Download syrctl

For every release of the Antidote platform, a corresponding release is created for Syringe. You can always find the latest release here [https://github.com/nre-learning/syringe/releases/latest], where pre-compiled binaries of Syringe have been posted. Download the file appropriate for your system, and extract the binaries into a directory on your $PATH (or extract them anywhere and run via relative path). Either is fine.

Validating Lesson Content

One of the things syrctl can do for us is validate lesson content to make sure it has all of the basics to work properly. This is done via the sub-command syrctl validate. This command is directed at a curriculum directory in order to work: for instance, we have the NRE Labs curriculum installed locally:

~$ ls -lha
total 68K
drwxr-xr-x 6 mierdin mierdin 4.0K Apr 21 22:52 .
drwxr-xr-x 10 mierdin mierdin 4.0K Apr 15 23:19 ..
drwxrwxr-x 3 mierdin mierdin 4.0K Apr 17 17:39 collections
drwxr-xr-x 8 mierdin mierdin 4.0K Apr 23 21:27 .git
drwxr-xr-x 18 mierdin mierdin 4.0K Apr 6 12:49 images
drwxr-xr-x 5 mierdin mierdin 4.0K Apr 21 22:52 lessons
-rw-r--r-- 1 mierdin mierdin 5.2K Apr 21 22:54 CHANGELOG.md
-rwxr-xr-x 1 mierdin mierdin 500 Apr 15 15:19 check-changelog.sh
-rw-rw-r-- 1 mierdin mierdin 0 Apr 21 13:04 curriculum.meta.yaml
-rw-r--r-- 1 mierdin mierdin 33 Apr 6 12:49 .dockerignore
-rw-r--r-- 1 mierdin mierdin 573 Apr 6 12:49 .gitignore
-rw-r--r-- 1 mierdin mierdin 12K Apr 6 12:49 LICENSE
-rw-r--r-- 1 mierdin mierdin 1.1K Apr 15 18:56 README.md
-rw-r--r-- 1 mierdin mierdin 288 Apr 6 12:49 .travis.yml
-rwxr-xr-x 1 mierdin mierdin 288 Apr 15 15:19 validate-lessons.share

We’re already cd’d into this directory, so we just need to run syrctl validate . to instruct syrctl to validate the local directory:

~$ syrctl validate .
INFO[0000] Successfully imported lesson 14: Introduction to YAML --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 0, CONNECTIONS: 0
INFO[0000] Successfully imported lesson 16: Using Jinja for Configuration Templates --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 0, CONNECTIONS: 0
INFO[0000] Successfully imported lesson 17: Version Control with Git --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 0, CONNECTIONS: 0
INFO[0000] Successfully imported lesson 19: Working with REST APIs --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 3, CONNECTIONS: 4
INFO[0000] Successfully imported lesson 22: Introduction to Python --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 0, CONNECTIONS: 0
INFO[0000] Successfully imported lesson 23: Linux Basics --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 0, CONNECTIONS: 0
INFO[0000] Successfully imported lesson 12: Network Unit Testing with JSNAPY --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 3, CONNECTIONS: 3
INFO[0000] Successfully imported lesson 13: Multi-Vendor Network Automation with NAPALM --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 1, CONNECTIONS: 0
INFO[0000] Successfully imported lesson 15: Event-Driven Network Automation with StackStorm --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 3, CONNECTIONS: 3
INFO[0000] Successfully imported lesson 18: End-to-End Network Testing with ToDD --- BLACKBOX: 0, IFR: 0, UTILITY: 2, DEVICE: 1, CONNECTIONS: 2
INFO[0000] Successfully imported lesson 24: Junos Automation with PyEZ --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 1, CONNECTIONS: 1
INFO[0000] Successfully imported lesson 25: Juniper Extension Toolkit (JET) --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 1, CONNECTIONS: 1
INFO[0000] Successfully imported lesson 26: Vendor-Neutral Network Configuration with OpenConfig --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 1, CONNECTIONS: 1
INFO[0000] Successfully imported lesson 29: Using Robot Framework for Automated Testing --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 1, CONNECTIONS: 1
INFO[0000] Successfully imported lesson 30: Network Automation with Salt --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 1, CONNECTIONS: 1
INFO[0000] Successfully imported lesson 31: Terraform & Junos --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 3, CONNECTIONS: 3
INFO[0000] Successfully imported lesson 21: Automating the Troubleshooting Chain --- BLACKBOX: 2, IFR: 0, UTILITY: 2, DEVICE: 3, CONNECTIONS: 6
INFO[0000] Successfully imported lesson 32: Automated STIG Compliance Validation --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 1, CONNECTIONS: 0
INFO[0000] Successfully imported lesson 33: Quick and Easy Device Inventory --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 2, CONNECTIONS: 0
INFO[0000] Successfully imported lesson 34: Automated Device Configuration Backup --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 2, CONNECTIONS: 0
INFO[0000] Successfully imported lesson 35: Device Specific Template Generation --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 2, CONNECTIONS: 0
INFO[0000] Imported 21 lesson definitions.
All detected lesson files imported successfully.

This runs the exact same logic that syringed would use to load lessons on the server-side, so this is a really handy way to make sure the basics of curriculum definitions are done correctly.

On the NRE Labs Curriculum repository [https://github.com/nre-learning/nrelabs-curriculum], we’re actually running syrctl validate on every new Pull Request to ensure things are set up properly, as much as possible.

There are things it won’t check - like the validity of a network configuration, or that your Docker image is built properly, but in terms of the things that Syringe requires, it will give you confidence in a stable starting point, rather than reading through a list of points in this doc.

Automatic Lesson Creation

This is TBD. In the future, syrctl will contain a command for bootstrapping a new lesson more easily.

Development

If you’re interested in digging into the actual code and contributing to the Antidote project, this set of documents will help.

Familiarize Yourself

First, you should take a look at the Architecture section. It’s likely you don’t need to know how the whole thing works, as most contributions here are to a very specific component, but the context to which your contributing is important.

From a code perspective, the Antidote platform is separated into two main parts:

	antidote-web [https://github.com/nre-learning/antidote-web] - this is the web front-end for the platform. If you lean more towards front-end development, such as HTML, CSS, and Javascript, this repository is a good place to start. Note that antidote-web forms the basis for the web front-end, but depends on a few other repositories for certain functionality:

	antidote-ui-components [https://github.com/nre-learning/antidote-ui-components] - houses web components for various portions of the application

	nre-styles [https://github.com/nre-learning/nre-styles] - stylesheets used by antidote-web and other project sites

	antidote-localizations [https://github.com/nre-learning/antidote-localizations] - localization strings for the copy within the platform application

	antidote-core [https://github.com/nre-learning/antidote-core] - this is the core set of services that power the “back end” of Antidote. It is here that we integrate with Kubernetes and provide an API for antidote-web to consume. It is also here where we maintain any command-line tooling, such as the antidote command.

The README.md file for both antidote-web and antidote-core contain instructions for building the software, and, if applicable, running tests. Please refer to those for more information.

The first thing you should do for any repository mentioned above that is of any interest to you, is to “Watch” it. Any activity that takes place in this repository will generate a notification for you. You can control how you’re notified in your GitHub settings, but we recommend enabling email notifications. It’s a great way to make sure you’re at least aware of what’s going on. If you aren’t interested, you can always just delete the email.

Pull Request Reviews

A good way to get familiar with the code is to “Watch” a repository, and when someone opens a PR, provide a constructive review. Many of the core platform developers open pull requests as soon as they start working on a feature or a bugfix, which often gives a large window of time where the pull request is open and questions can be asked, even on specific lines of code that changed.

Any constructive comments or questions here are not only appreciated, but it’s often the best way to get insight into how the platform works, as you’re inserting yourself right into where the work is actually getting done, without having to write a single line of code yourself. You don’t have to be a platform developer or even consider yourself a developer at all to be curious and ask questions. We’d love to have you and help you get more familiar with how things work within the Antidote platform.

Contribute

In almost every repostory, we have labeled issues by complexity, so you can see at-a-glance which issues have been identified for the express purpose of getting started with the project. You can use this to get an estimate for how much work a given task is expected to take. For your first contribution, you may want to stick with “low complexity”.

For simple enhancements or fixes, feel free to open a Pull Request at any time. If you’re not quite ready for a review, open the pull request as a “draft”, or otherwise indicate that it’s a work-in-progress. Please fill out the template description so reviewers can make sense of your contribution more easily.

For big contributions, know that the more communication you provide ahead of time, the better - especially if you’re new to the platform. It’s often work opening an issue in advance, so we can have a discussion about the intended outcome of the contribution, and how we can make sure it melds well with the project as a whole.

Antidote Release Process

The Antidote platform is comprised of multiple subprojects, which all need to be coordinated to release the Antidote platform as a cohesive unit. The lifecycle of a release of the Antidote platform is performed in four discrete steps, which are outlined in the following sections.

1 - Release Kickoff

A post will be created in the Project Management [https://discuss.nrelabs.io/c/project-management/10] forum topic to notify everyone that the work on this release has begun, with the title “Release Kickoff…”. This forum thread should serve as the center of all release planning discussions, and all are welcome to participate. If you have something you think should be included in or excluded from the release plan, speak up there.

In this first kickoff, we’ll begin gathering ideas for things we want to get done in this release. These will be retrieved from various sources:

	First we start with the Antidote v1.0 Roadmap [https://github.com/nre-learning/proposals/blob/master/antidote-v1.0/roadmap].

Are there any milestones for the upcoming release we need to hit?

	Second, we comb through the issues for the repos and triage accordingly. Which are ready to

be worked on, or are most imminent, according to complexity labels?

While the kickoff is meant to get a starter list together, it’s likely that more ideas will come up at any time in the release cycle. This is normal, and expected. However, the first week of a release cycle should strive to ensure the really important things are well-documented and if possible, assigned.

A project plan for the release that represents the work discussed in the previous week will be posted to the nre-learning org’s projects list [https://github.com/orgs/nre-learning/projects] and presented to attendees. This is a kanban-board style project planning tool that allows all to easily see the state of work for a given release.

Not all work fits neatly into a release plan, and that’s okay. Contributions of any kind can reasonably take place at any time. The purpose of a release plan isn’t to put limits on the work that can be done for a release, but rather to ensure that the important things that really need to get done are accounted for. If you want to work on something that’s not explicitly asked for in the release plan, that’s totally fine.

2 - Development Work

Once a release cycle is kicked off, the only thing left to do is….do the work! At this point, a relatively complete list of things to do for this release should be captured in a Github project, which will be linked to in the community forum kickoff post. Contributors can use this as a guide, or do other work they think is useful.

The Platform Development Guide should be consulted repeatedly to ensure you’re on the right track with respect to platform contributions. All of those guidelines apply here. It’s important for contributions to follow this lifecycle, so that release managers can properly coordinate work across the project.

3 - Testing Phase

Once the tasks identified for this release have been finished, we will freeze master for all platform projects and begin a round of end-to-end testing.

The test curriculum [https://github.com/nre-learning/antidote-test-curriculum] has been constructed for the purpose of testing all of the Antidote platform features. This curriculum should be updated to ensure not only compatibility with any platform changes, but also that all of the features of the platform are suitably used and tested.

A forum topic will be posted to Platform Project Management [https://community.networkreliability.engineering/c/platform-project-management] with the title “Testing Antidote Release vX.X.X”. This will contain a link to the testing procedure, and a summary of the CHANGELOG at that point in time, so that new features can be tested properly. For a minimum of seven days from the date of the post, contributors should submit feedback to this forum thread, or as Github issues.

4 - Release and Deployment

Once the testing phase has completed, the NRE Labs Ops team will execute a workflow that creates a release for all relevant platform projects. This will create docker images for everything with appropriate tags, as well as provide compiled binaries for Syringe.

After the release is finished, it’s entirely up to those in charge of the NRE Labs curriculum release process when or if this platform release is used in production for the NRE Labs site.

In the following week (or at most two), the cycle will repeat, and a new release kickoff will take place.

Hacking Instructions

There are two main components to the Antidote platform:

	Antidote-web

	Syringe

These are separate mostly because they use very different technologies, and therefore have very different processes for getting up and running with the code. Read on for details:

Hacking on Antidote-web

Antidote-Web [https://github.com/nre-learning/antidote-web] is Antidote’s web front-end. It’s the user interface through which the learning takes place.

This is a part of the project undergoing some severe changes currently, and if you’re interested in getting involved, it’s best to reach out on our community forums, and someone will help you out. Stay tuned for more detailed development info to be posted here.

Hacking on Antidote-Core

TBD - while antidoted normally relies on kubernetes to operate, you can disable the scheduling service via config if you want to do some API testing.

antidoted needs nats at dev time

docker run --rm -d -p 4222:4222 -p 6222:6222 -p 8222:8222 --name nats-main nats

Antidote-core [https://github.com/nre-learning/syringe] forms the collection of back-end services that provide orchestration for lesson resources, while providing an API for the web front-end to consume.

To build antidote-core, you’ll need to install the version of Go specified in the Dockerfile [https://github.com/nre-learning/syringe/blob/master/Dockerfile#L1]. While other versions of Go should work, the version listed there is the currently/officially supported version.

Within the antidote-core repository, compile binaries with:

make

You can also run tests with:

make test

You can also build the antidote-core docker container with:

make docker

Object Reference

Antidote is a platform for bringing otherwise complicated technical learning material to the masses, by taking care of the complexity behind the scenes, out of sight of the learner. To that end, there are a variety of tools we make available to you, the lesson author / teacher to make this possible.

Some tools are designed to make things easier to teach, others makes things easier to learn, other things do both. Please read through this portion of the documentation so you don’t miss out on any useful tools you can leverage to really make your content stand out.

In Antidote, all curriculum content is defined through a set of types, usually represented either as YAML files, or as properties of a type that is represented in a YAML file. We’ll loosely refer to these things as “objects”, and they (as well as any supporting files) are stored within a Git repository, forming a curriculum. This section of the documentation is meant to be used as a reference - all supported Antidote objects are defined and explained in these sections.

It’s important to note that while this portion of the documentation is designed to inform about details, the vast majority of what’s contained here is available through the various creation wizards of the antidote CLI tool.

Collections

With any curriculum, there are natural categorizations that arise from its content. For instance, in the automation space, you have fundamental skills, tools, and then the application of those tools. Further, you have categorization within each of those - maybe according to language or level of difficulty.

Sometimes a second axis of categorization is needed. Some lessons which have little to nothing in common technically, are tightly aligned around some other theme. For instance, a group of technically unrelated lessons might all be contributed by the same organization, and it would be nice to be able to see them all in one place, with some references to where users can learn more about that organization. Or maybe some lessons operate under some kind of constraint, such as only being useful on a certain vendor’s equipment.

Enter collections. These are a new resource type in Syringe that allows you to define all of the metadata necessary for describing such a grouping. Just like other resource types, collections are defined in a simple YAML definition, and Antidote takes care of nicely rendering it in the web UI:

[image: ../../_images/redhat.png]

Once defined, other resources like lessons are able to reference the ID(s) of the collection they belong to, if applicable. See the collection field in lesson definitions.

An important note, especially if you’re looking to create a collection for your company. This is totally acceptable - nay, encouraged - as long it’s done the right way. Collections aren’t a sales pitch. You can talk about your company and give a brief overview, but stay away from language like “we’re the best” in favor of simply and succinctly describing what you do, why you have contributed to NRE Labs, and what users can expect to see from you here.

Defining a Collection

Defining a collection is fairly straightforward. There’s a bit of metadata, and a few description fields for you to populate. There are also some fields for pointing users to a relevant website or contact email, where appropriate. This is useful to give users a place to go after they find your content, and want to find out more about the person or organization behind it.

id: 7
title: Red Hat
image: https://raw.githubusercontent.com/nre-learning/nrelabs-curriculum/master/collections/redhat/redhat.jpg
website: https://www.redhat.com
contactEmail: "customerservice@redhat.com"

Why should users view your collection?
briefDescription: |
 Red Hat is the world’s leading provider of enterprise open source solutions, using a community-powered approach to deliver high-performing Linux, cloud, container, and Kubernetes technologies.

Why should users continue and view your lessons?
longDescription: |
 Red Hat is the world’s leading provider of enterprise open source solutions, using a community-powered approach to deliver high-performing Linux, cloud, container, and Kubernetes technologies.

 We help you standardize across environments, develop cloud-native applications, and integrate, automate, secure, and manage complex environments with award-winning support, training, and consulting services.

type: vendor
tier: prod

This collection definition is just an example. You should look at the existing collection definitions [https://github.com/nre-learning/nrelabs-curriculum/tree/master/collections] for inspiration. Note also that not every field picture above is required. Some are optional. Using thesyrctl validate command will be useful for identifying which fields you need to provide no matter what.

As with lesson definitions, follow the NRE Labs curriculum contribution guide in order to get your collection added to the NRE Labs curriculum.

Images

To understand images within NRE Labs, the first place you should probably look is the set of existing images in the NRE Labs curriculum [https://github.com/nre-learning/nrelabs-curriculum/tree/master/images]. Familiarize yourself with the images that are there, and take a look at what they have in common.

Next, you should read the document on NRE Labs Endpoint Images to understand some of the higher-level principles and processes for Images within the NRE Labs curriculum. This document will assume you’ve read that and have decided to build your own image.

Once finished with this document, you can open a Pull Request to the NRE Labs curriculum to add a new folder to the images directory, [https://github.com/nre-learning/nrelabs-curriculum/tree/master/images] with all of the files mentioned below.

Building an Image

In Antidote and NRE Labs, Endpoint Images are just Docker images that we use within the context of a lesson. As a result, the vast majority of what you need to know to build an Endpoint image is contained in any reasonable Docker tutorial, especially content that focuses on building images. For now, start with tutorials like the ones below, and learn the basics of Docker images:

	Docker: Getting Started [https://docs.docker.com/get-started/]

	Dockerfile Best Practices [https://docs.docker.com/develop/develop-images/dockerfile_best-practices/]

	Interactive Katacoda Lesson on Docker [https://www.katacoda.com/courses/docker/2]

Some tips for building an image:

	Keep it lightweight - don’t import the entire internet into your image. If your image needs more than 4GB of memory to run, and more cores than you have fingers, you’ve made a wrong turn. Include only that which is nece

	Keep it simple - Endpoints in NRE Labs are for learning - they’re not meant to be highly-available or fault-tolerant. Deploy the simplest version of your software when building images - the StackStorm [https://github.com/nre-learning/nrelabs-curriculum/tree/master/images/stackstorm] image is a good example of this - all services running in a single container. This is fine.

	Use trusted, lightweight base images - Default to using trusted images like debian or centos as your base image. This not only helps to keep image size down, but also helps us keep a handle of what’s running in our images. Use multi-stage builds [https://docs.docker.com/develop/develop-images/multistage-build/] if you need to keep the final image size to a reasonable number.

	Include the entire source - in addition to the required files listed below, any scripts, configs, or misc. files needed to run “docker build” must be provided in any Pull Request. The only exception to this is Large or Sensitive Files.

Note also that in most cases, images need to be built to be interactive. Anything configured within the Endpoints and Presentations sections of a lesson definition will require some kind of network access, such as a running HTTP or SSH server. Even lesson endpoints that don’t have explicit presentations will still have some kind of server, such as an API. Make sure you’ve considered this in building your image - some kind of network access will be necessary at runtime.

Required Files

There are a few extra files needed by every image that are specific to NRE Labs:

Makefile

Images are automatically built using our back-end CI/CD workflows, and require a Makefile to be put in place that supports a particular way of being called. You may include steps of your own if needed, but at a minimum, the Makefile must contain the following (please insert your own image name):

SHELL=/bin/bash

TARGET_VERSION ?= latest

all: docker

docker:
	docker build --pull --no-cache -t antidotelabs/<image name here>:$(TARGET_VERSION) .
	docker push antidotelabs/<image name here>:$(TARGET_VERSION)

Dockerfile

All images must also come with a Dockerfile [https://github.com/nre-learning/nrelabs-curriculum/blob/master/images/utility/Dockerfile]. This allows us to build our own image, rather than directly using a third-party image. All necessary steps to customize this base image should be done here.

Image Definition

To use an image within NRE Labs, images must come with a meta-data file called images.meta.yaml. This is similar to the meta-data file for lessons but much simpler.

The best way to create a new image definition is using the antidote command-line interface, using the antidote image create subcommand. This will walk you through an interactive wizard that creates a new image definition with all the relevant fields. Note that this doesn’t automatically provide any other required files, like Makefiles or Dockerfiles. You’re still on the hook for doing this.

Read the below for an example image definition, with comments in-line:

Uniquely identify the image
slug: stackstorm

Brief description of the image
description: stackstorm

Should this image be run with privileges? (assume no)
privileged: false

Username and password for connecting via an SSH presentation
sshUser: antidote
sshPassword: antidotepassword

Username and password used for configuration scripts
configUser: antidote
configPassword: antidotepassword

List of network interfaces for this image
networkInterfaces:
 - 'eth0'

Large or Sensitive Files

Occasionally, such as for commercial software, we need to include sensitive files in the build process. This might be a commercial network operating system image, or perhaps a license file.

If your image requires a large file (pretty much anything over 10MB) that already exists somewhere else on the internet, rather than trying to put it in the lesson directory, add a step to your Dockerfile or Makefile to download those files from their original location (preferably with integrity verification using SHA256 hash or similar).

If you have a large or sensitive files you wish to include in an NRE Labs image, but don’t want those files to be publicly available, the NRE Labs project also maintains a private cloud storage bucket that is accessible only within our build system, and these are downloaded during the build process. Get in touch with us [https://discuss.nrelabs.io/] and we’ll help you figure out a way to get these into the curriculum safely.

Lessons

Lessons are the quintessential curriculum resource. When Syringe starts, it looks for lesson definitions within the configured curriculum directory, loads them into memory, and serves them directly via its API.

Lessons are primarily defined using a lesson.meta.yaml file. This is written in YAML, and contains a series of fields for making a lesson work.

If you’re feeling overwhelmed, don’t worry. This file can be broken up into sections, and we’ll do this to explain it, piece by piece. For now, let’s just focus on the top portion:

A human-readable title for your lesson
lessonName: Network Unit Testing with JSNAPY

#
lessonSlug: unit-testing-jsnapy
category: tools
lessonDiagram: https://raw.githubusercontent.com/nre-learning/nrelabs-curriculum/v0.3.2/lessons/lesson-12/lessondiagram.png
tier: prod
prereqs:
 - 14 # YAML
 - 23 # Linux
description: Unit testing your network devices is one of the fundamental building blocks to CI/CD for networking. In this lesson, we'll explore the use of an open source tool - JSNAPy - for doing just this with Junos devices.
slug: JSNAPy
tags:
- jsnapy
- test
- unit test
- testing
collection: 1

Some of these fields are required, some aren’t. Some have a length requirement, and others don’t. For guidance here, you should definitely get up to speed with the syrctl tool. That tool has a validation function you can run on a curriculum, and it will let you know if anything needs fixed.

	lessonName The human-readable name for a lesson. Kind of like a blog post title.

	lessonSlug A unique ID for this lesson. You can assign this yourself, as long as it’s unique in this curriculum.

	category The category for this lesson - supported options are “fundamentals”, “tools”, and “workflows”

	lessonDiagram An internet-accessible URL to an image to use as a diagram for this lesson

	tier The environment this lesson is meant to run in. Options are “local”, “ptr”, and “prod”

	prereqs A list of lesson IDs that a learner should go to first, to prepare for this lesson properly.

	description A slightly more long-form explanation of what’s included in this lesson

	slug Ideally, a very short (1-3 words) summary of this lesson. Used for searching.

	tags A list of keywords that are included in this lesson. Used for searching.

The remaining sections are explained in separate documents:

	The endpoints section is explained in endpoints.

	The connections section is explained in connections.

	The stages section is explained in stages.

Authors

Connections

In Antidote, Lesson Endpoints are spun up as containers within a Kubernetes cluster. As a result, they all have a single eth0 network interface by default. However, as NRE Labs is designed to teach complex infrastructure topics, often a single network interface is not enough. This document will explain how we use a concept called “Connections” to provide multiple interconnections directly between Lesson endpoints.

Imagine you have a lesson definition with three endpoints: vqfx1, vqfx2, and vqfx3. You can think of these like nodes in a graph topology, as all networks are. So, if Endpoints are nodes, then the edges, or the connections between these nodes, are connections:

connections:
- a: vqfx1
 b: vqfx2
- a: vqfx2
 b: vqfx3
- a: vqfx3
 b: vqfx1

This is a simple list of connections from a to b. The first connection is from vqfx1 to vqfx2 and so on. Antidote will create virtual networks for each Connection, and then attach Endpoints to them.

How will these networks show up in my lesson?

The way these networks will be made available will depend on how the image is built. If a native container, net1, net2, and so forth. If a VM-in-container, it could be anything. In the future we may go with a solution like Kata containers by default, which could also add a wrinkle.

At the moment, the best place to know which network interfaces will be available to you is to consult the the image metadata files, which includes a list of network interfaces that the image makes available to be used. This is an ordered list, and interfaces are consumed in order of the Connections that reference that endpoint.

Endpoint Configuration

One of the best attributes of the Antidote platform is that it takes on as much complexity as is needed on the back-end in order to provide a seamless learning experience to the user on the front-end. A big part of this is the ability to automatically configure all lesson endpoints to fit the scenario being used to teach a concept, so that when the learner is ready to take on a subject, they aren’t distracted by fiddling with configurations to “prep” the lesson.

Much of this advantage is gleaned from the fact that all Endpoints are started from Docker images, which start the same way each time. All Endpoint software dependencies, configurations, scripts, etc. are built right into the image. However, it’s not always possible to put everything into this image at build time. For instance, a network device can be built as a Docker image, but depending on the Lesson or Stage, might have wildly different configurations, in order to teach a particular concept. For this, Antidote offers the ability to configure Endpoints dynamically once they’re started from their base image.

Don’t overdo it with endpoint configuration. The fact that Antidote is powered by containers which are cryptographically guaranteed to start from the same base image each time is a huge advantage and it’s useful to bake configurations into the container image wherever possible. So, use the configuration options below, but in proper balance with an already fairly functional base image configuration.

To accomplish this configuration, the Antidote project maintains a configurator image, which has all of the necessary prerequisites for performing Endpoint configuration. When Antidote needs to perform a configuration for lesson Endpoints, such as when a lesson is initially loaded, or when the user is navigating to a new Stage, Antidote will spin up one configuration pod per lesson endpoint to perform the relevant configuration steps, and will populate those pods with a few useful environment variables that can be consumed by the configuration scripts defined by the lesson author. They are described below:

Variable	Description
:—	:—
ANTIDOTE_TARGET_HOST	Set to the IP address of the endpoint. Useful because this is always dynamic
ANSIBLE_HOST_KEY_CHECKING	Set to “False” so that Ansible is able to connect to any image if used (we don’t pre-populate our images with known keys)

Endpoints are individually configured on a per-stage basis, and the Antidote platform provides several mechanisms for accomplishing this, so lesson builders have options when it comes to configuring their Endpoints.

Specifying which configuration type you want to use for your endpoint is fairly straightforward, but there are some underlying implications you should be aware of for each option, which we’ll explain below.

Configuration Options

NAPALM

Usage: configurationType: napalm-<driver>

One of the most popular use cases for configuring endpoints between stages is putting a network configuration into place that’s relevant to the concepts being taught. You may want to have three virtual switches in a topology but based on the stage being viewed, the configuration might need to change. This is a very common scenario.

Rather than write a custom Python script or Ansible playbook to simply load a config onto a network device, you can use the NAPALM [https://github.com/napalm-automation/napalm] configuration option shown here.

To use this option, you need to specify a specially formatted configurationType value. This configuration option uses the napalm-<driver> syntax, where <driver> is the name of the NAPALM driver [https://napalm.readthedocs.io/en/latest/support/#general-support-matrix] you wish to use. For instance, if the network device is running Junos, you’ll specify configurationType: napalm-junos. Anything after the hyphen is passed directly to NAPALM, so make sure you’re using the right driver name.

This configuration option will look for a file with the extension .txt, which is named identically to the endpoint you wish to configure. For instance, a configuration for a device called vqfx1 will be named vqfx1.txt. A configuration file must exist for every endpoint that uses this option, in the config directory of every stage.

Some network images use IP masquerade (NAT) for the management interface, which means you don’t need to worry about the IP configuration for this interface - it’s usually static per that image’s configuration. The “outer” address is assigned automatically from a container level, and the inner virtual machine doesn’t need to worry about it. However, in some cases, NAT is not used, and you need to be able to leverage the environment passed to the configuration pod to ensure you get the right address. If this describes you, read on. If not, you can safely ignore the next paragraph.

As mentioned previously, all configuration pods are started with the environment variable SYRINGE_TARGET_HOST set to the IP address of the endpoint within Kubernetes. This is useful because this is assigned dynamically and you might want to use this in your configuration. So, instead of applying the configuration directly to the device, the configuration environment will first render the source file as a Jinja2 template. If you reference the variable mgmt_addr anywhere in the config using Jinja syntax (e.g. {{ mgmt_addr }}), it will be replaced with the IP address of the management interface. The subnet mask of this interface must be configured according to the CNI configuration in place. Normally this is a /12.

This will use NAPALM’s load-merge function to load the resulting config onto the device, and commit it.

Python

Usage: configurationType: python

If you wish, you can use a custom Python script to make the necessary configuration changes. If you specify the above configurationType value, you’ll need to make sure that for every endpoint that uses this option, a file named <endpoint>.py is present in the config directory for each stage.

Ansible

Usage: configurationType: ansible

If you wish, you can use an Ansible playbook to make the necessary configuration changes. If you specify the above configurationType value, you’ll need to make sure that for every endpoint that uses this option, a file named <endpoint>.yml is present in the config directory for each stage for every endpoint that uses this option.

Endpoints

A foundational concept within Antidote is the ability to run the software or appliances needed to educate the learner about a particular topic. It’s nice to have lesson guides that walk through a concept, but the whole point of the Antidote project was to provide that ease of use without sacrificing any of the interactivity that comes with being able to play with the tech directly.

At its core, an Endpoint is simply a Docker container that is built to run some software. This could be a simple Bash/CLI environment, it could be a web server, or even a full-blown network device. While the technical implementation of these endpoints is done by Images, Lessons refer to these Image through Endpoint definitions as described here. Bottom line, if you want the user to interact with something in your lesson, you need Endpoints.

Generally, Endpoints are configured within the :ref:lesson definition <lessons> file, lesson.meta.yaml, which can be found at the root of any lesson directory. Within this file, Endpoints are declared under the endpoints key, like so:

endpoints:
- name: linux1
 image: antidotelabs/utility
 presentations:
 - name: cli
 port: 22
 type: ssh

- name: vqfx1
 image: antidotelabs/vqfx-snap1
 configurationType: napalm-junos
 presentations:
 - name: cli
 port: 22
 type: ssh
 additionalPorts: [830]

A few points about the above:

	The name field is up to you to define - you can call each endpoint whatever you want, provided all endpoints

have a unique name.

	The image field is a DockerHub-compatible image reference, which is passed directly to the underlying Kubernetes infrastructure to run your image. See here for more information on images.

	The configurationType field is optional, and allows you to specify what kind of automatic

configuration should be done for this endpoint. See here for more information on endpoint configuration.

	The presentations field is also optional, and allows you to specify ways that this endpoint should be presented to the user. This could be a CLI terminal, or even a web application with it’s own tab. See here for more information on endpoint presentations.

	The additionalPorts field allows you to specify any additional ports that should be opened for this endpoint. By default, only the ports listed in a presentation are opened. So, this field allows you to directly specify ports that should be opened regardless of the presentations that are configured.

Health Checks

In order to know if a lesson is running, Syringe will perform health checks on endpoints based on each endpoint’s configured presentations field. By default, for every Presentation, Syringe will perform a basic TCP connection periodically as a heartbeat to ensure that these presentations are accessible. This means that each endpoint must be able to provide connectivity on every port opened by a Presentation.

Some endpoints may not have any Presentations - in this case, the additionalPorts field is required, and must have at least one port configured. Syringe will then use the first port in this list to perform a health check, and will mark the endpoint as healthy.

Once all endpoints are viewed as healthy, based on these health checks, the lesson will move into the configuration stage, or if no configuration is necessary, will move directly into the Ready state, so that the web front-end can start offering the content to the learner.

Presentations

At this point, hopefully you understand how :ref:Endpoints <endpoints> provide a basis for creating an interactive learning experience. However, there’s no interactivity unless those Endpoints are made accessible somehow to the learner. Enter Presentations.

Defining a Presentation

You can specify a list of Presentations on an Endpoint to indicate how you want that Endpoint to be “presented” to the learner. A simple example is shown below. In this case, we’re offering a single Presentation for an Endpoint, that provides SSH terminal access to that endpoint over port 22:

endpoints:
- name: linux1
 image: antidotelabs/utility
 presentations:
 - name: cli
 port: 22
 type: ssh

As you can see, each Presentation in the list has three fields for you to specify:

	name - The name of the presentation. This can be whatever you want, as long as it’s relatively short and

unique for that endpoint.

	port - The port that Antidote should use to access the container for this Presentation.

	type - This controls the type of presentation being offered. Currently supported options are ssh and http.

You can get creative with Presentations. First and foremost, you probably noticed that the presentations attribute is plural form, and provided as a YAML list. This is because you can have multiple Presentations to the same Endpoint:

endpoints:
- name: linux1
 image: antidotelabs/utility
 presentations:
 - name: cli1
 port: 22
 type: ssh
 - name: cli2
 port: 22
 type: ssh
 - name: web
 port: 80
 type: http

These will all be shown as individual tabs in the web front-end, and they will be disambiguated via their Presentation name. For instance, the example above will result in tabs linux1-cli1, linux1-cli2, and linux1-web.

Finally, in some cases you don’t want any presentations. A common example of this is some kind of endpoint that you need to access from another Endpoint via REST API. You want to provide a Presentation to the user to execute some kind of tool or script, but the Endpoint offering the REST API merely needs to exist in the environment and respond to queries.

In this case, merely omit the presentations field entirely, but note that in this caseadditionalPorts becomes a required field, and must specify at least one port.

endpoints:

- name: linux1
 image: antidotelabs/utility
 presentations:
 - name: cli
 port: 22
 type: ssh

- name: restapi
 image: antidotelabs/utility
 additionalPorts: [80]

Because the above Endpoint restapi didn’t have any presentations, we needed to ensure at least one port was provided in additionalPorts. The learner can then access the linux1 endpoint and use the tooling in that Endpoint to access the REST API of restapi.

Presentation Options

There are some implementation details for each of the available presentation types specified in the type field that you should be aware of.

SSH

Usage: type: ssh

This one is pretty straightforward. A very common use case for interacting with Endpoints is to provide an interactive CLI (Command Line Interface) terminal in the Antidote front-end. This is accomplished by connecting directly to the Endpoint via SSH, and using that connection to provide the experience to the web.

As long as your Endpoint is configured to listen on the port you specify in the Presentation for SSH connections with the username antidote and antidotepassword, Antidote will take care of connecting it to the user on the front-end.

HTTP

Usage: type: http

Not all content is best shown via the CLI. Sometimes you want to be able to show some kind of web-based portal that’s running on an Endpoint, such as a self-service application, which interacts with other Endpoints on the back-end.

In this case, the http type can be used. A tab will be opened for this Presentation, but instead of a terminal, the tab contents will show the web application you provide in the Endpoint (in an iframe). A few considerations for this option:

	HTTPS is not currently supported. We need to iron out a few wrinkles in the implementation first, and we’ll support either protocol, very soon. For now, use HTTP, and the Antidote load balancer will serve the content from a reverse proxy that provides HTTPS.

Stages

When learning any topic, it’s important to be able to break it up into reasonable “chunks”. No one wants to start at a wall of learning material they know will take them the better part of an afternoon to get through.

In Antidote, lessons are broken up into Stages. The intention behind Stages is to provide a logical place to “break up” lesson content. You can think of them like chapters in a textbook; where the goal of an Algebra textbook is to teach algebra, we really only care about linear equations in Chapter 1. Those not only provided bounded structures for learning, where the learner is able to more easily wrap their head around the content and feel like they’ve accomplished something, it also helps them understand the path in front of them.

In any lesson, Stages are defined using the stages stanza in the lesson definition file:

stages:
- id: 1
 description: No BGP config - tests fail

- id: 2
 description: Correct BGP config - tests pass

When a lesson is loaded in the web front-end, these stages show up as a continuum that the user can select, underneath the lab guide:

[image: ../../../_images/stages.png]

While the Stage definition seems simple, there’s a lot that goes on when a user navigates between Stages by selecting something in that drop-down:

	All Endpoints with a configurationType will be reconfigured accordingly. This happens

when a lesson is initially loaded

	Endpoint health checks as described in Presentations are not done between stages. Presentations are static for the whole lesson, regardless of Stage. They’re done when the lesson is initially loaded.

	When a stage ID is omitted, the default is to load the first one, but this isn’t a requirement for users. Each lesson URL includes a Stage ID, which means hyperlinks to any stage in any lesson are honored. What this means for lesson builders is that while your Stages can (and should) have a natural progression, you should not rely on users to have done something themselves in Stage 1 in order for Stage 2 to work. If you have the user accomplish a task in Stage 2, you should still overwrite all configs yourself to the expected value in Stage 2’s configurations.

Each Stage has a particular directory structure that you should be aware of. As with most things involving curriculum resource definition, most of this is enforced by syrctl so you can validate this structure yourself, but here are some general rules:

.
├── jsnapy_config.yaml
├── jsnapy_tests.yaml
├── lessondiagram.png
├── lesson.meta.yaml
├── stage1
│ ├── configs
│ │ ├── vqfx1.txt
│ │ ├── vqfx2.txt
│ │ └── vqfx3.txt
│ └── guide.md
└── stage2
 ├── configs
 │ ├── vqfx1.txt
 │ ├── vqfx2.txt
 │ └── vqfx3.txt
 └── guide.md

	Each stage must have a corresponding directory called stage<N> where N is the stage ID.

	Each stage directory must have a configs directory, where all of the files related to Endpoint configuration should be kept.

	Each stage directory must also have either a markdown-based lesson guide, or a jupyter notebook to be used for the same. We’ll get into the differences between these in the next few sections.

Lab Guides

All NRE Labs lessons come with lab guides. These are meant to be instructions the learner can follow along with so they’re not spinning your wheels, wondering what to do with a lesson. It is also meant to include snippets of code or commands for them to execute, or have executed for them.

TODO - State in the lesson guide docs to not put any top-level headers, we’ll do that for you. Just start right into your first paragraph.

There are two options for lesson guides in Antidote today:

	Markdown <Writing Lab Guides with Markdown>

	Jupyter Notebooks <Writing Lab Guides with Jupyter Notebooks>

You can choose either of these options on a per-stage basis. This means that Stage 1 can have a Markdown lesson guide, Stage 2 a Jupyter notebook, and Stage 3 back to Markdown, if you want. The NRE Labs NAPALM lesson <https://labs.networkreliability.engineering/labs/?lessonId=13&lessonStage=1>_ is a good example of a lesson that leverages both options. The sections below will explain how to use either option.

Writing Lab Guides with Markdown

The simplest option by far is to write lab guides with Markdown [https://daringfireball.net/projects/markdown/syntax]. This is an extremely popular, simple formatting syntax for creating rich documents from plain-text sources. Most of the time when you see a README file on a GitHub repository, the chances are very good that it’s written in Markdown. What Github does is translate the raw text of the file into richly formatted, rendered versions appropriate for viewing in a web browser.

To enable this same experience for Antidote, lesson guides can be written in Markdown, and antidote-web will take care of translating the source file into HTML to be presented to the user.

You don’t have to use self-medicate to preview the HTML version for your Markdown documents. While every Markdown renderer is a bit different, and there might be some minor differences within the Antidote front-end, if you’re just looking for some basic HTML preview functionality, there are plenty of tools to do this:

	Keeping in the spirit of doing everything in the browser, Dillinger [https://dillinger.io/] is very handy for

working on lesson guides with a constant preview.

	Most popular text editors also have markdown preview functionality built in or available via plugin. For example, there’s good support for this in VS Code [https://code.visualstudio.com/docs/languages/markdown].

	There are a number of CLI tools available as well for doing the conversion yourself, such as Pandoc [https://pandoc.org/], if you are so inclined.

While native Markdown is perfectly fine, there’s one feature built into antidote-web you should be aware of that really uplevels your lesson guide. In Markdown, you can wrap a bit of text with triple-backticks, and it will preserve the formatting you use within that block. This is very useful for code or CLI commands, where the structure is very important.

echo “Hello World!”

Markdown-based lab guides include the ability to add a “Run this snippet” button to automatically run the contents of a code snippet in a given terminal tab. This is extremely useful and recommended to allow users to quickly execute your examples without having to type it out themselves.

To do this, the lesson author only needs to add some HTML underneath each snippet:

echo “Hello World!”

<button type="button" class="btn btn-primary btn-sm" onclick="runSnippetInTab('linux1', this)">Run this snippet</button>

Most of the HTML shown above can remain the same, but in the above example linux1 refers to the tab where this snippet should be executed. The front-end will switch to the tab named accordingly and paste that text automatically. So, you’ll need to edit this to point to the tab you want.

Also, when you’re adding a snippet to a lesson guide, sometimes you may want an extra newline run at the end. For example, if you are executing some Python code, and your snippet ends on a loop, or a conditional, you need an extra newline to get the interpreter to understand you’re done defining the loop.

The solution to this is to use <pre> tags in lieu of the traditional triple-backtick for embedding code in Markdown:

<pre>
echo "Hello World!"
</pre>
<button type="button" class="btn btn-primary btn-sm" onclick="runSnippetInTab('linux1', this)">Run this snippet</button>

These are rendered exactly the same way in the lesson guide, but the latter is interpreted much more literally when being pasted into the terminal window, meaning the extra newline is executed like any other character.

Finally, when you have a lesson guide ready, place it in the stage directory as guide.md. This is where the Antidote platform will look for this lesson guide.

Writing Lab Guides with Jupyter Notebooks

This section is focused on lesson authors looking to use Jupyter notebooks in the creation of a lesson. See here if you’re looking for an overview of how to use lesson guides in NRE Labs.

Many folks who have invested time in education on automation or related topics have some experience with Jupyter notebooks [https://jupyter.org/]. Jupyter notebooks are awesome in their own right, and it’s not fair to force folks to convert that content to Markdown just to get it working with Antidote. So, Antidote natively supports the use of Jupyter notebooks as lab guides in lieu of a Markdown-based guide.

Fair warning - Jupyter notebooks offer a lot more functionality than Markdown-based lab guides, but they do add a layer of complexity as a result. So, if you’re starting from scratch, it’s probably best to start with Markdown-based lab guides. However, the choice is yours.

Even cooler - any lesson that uses a Jupyter notebook is automatically provisioned a background Endpoint dedicated to running that notebook, that is run alongside all other Endpoints for that lesson. That means that you can take advantage of Kubernetes DNS when referring to other Endpoints in your notebooks. If you want to send a REST API request to an Endpoint with the name of webapp, you can refer to it via the hostname webapp, right in the notebook. No need to figure out IP addresses for stuff.

To use a Jupyter notebook as a lesson guide in an Antidote lesson, you need only add the line jupyterLabGuide: true to each Stage that requires it in your lesson definition. Here’s an example of a lesson that uses Jupyter notebooks for stages 1, 2, and 4, but uses the traditional Markdown format for stage 3:

stages:
- id: 1
 description: Get device facts
 jupyterLabGuide: true
- id: 2
 description: Get information with NAPALM "getter" functions
 jupyterLabGuide: true
- id: 3
 description: The NAPALM Command-Line Utility
- id: 4
 description: Make configuration changes with NAPALM
 jupyterLabGuide: true

When you do this, you will need to make sure that a jupyter notebook titled notebook.ipynb is in all relevant stage directories. This obviates the need for a guide.md file.

If you’re starting from scratch and wish to write a Jupyter notebook, your best bet is to follow an online Jupyter notebook tutorial [https://www.codecademy.com/articles/how-to-use-jupyter-notebooks] to get it started. Or you can copy one from an existing lesson into your lesson, and once spun up, you can use the Jupyter GUI to edit and download the revised notebook.

Platform Documentation

This section covers the specifics of the Antidote platform, such as the architecture, and configuration details.

The Antidote CLI

The Antidote platform also comes with a CLI tool called antidote, which is meant to be used primarily by curriculum authors to validate or create new curriculum content like lessons.

You can always find the latest release here [https://github.com/nre-learning/syringe/releases/latest], where pre-compiled binaries for Antidote have been posted. For convenience, shell commands for downloading the latest version of this tool on your system are below:

{% tabs %}
{% tab title=”macOS” %}

curl -Lo antidote.tar.gz https://github.com/nre-learning/antidote-core/releases/download/v0.7.0/antidote-darwin-amd64.tar.gz
tar xvzf antidote.tar.gz
./antidote -h

{% endtab %}

{% tab title=”Windows (x64)” %}

$ProgressPreference = 'SilentlyContinue'
Invoke-WebRequest https://github.com/nre-learning/antidote-core/releases/download/v0.7.0/antidote-windows-amd64.zip -O antidote.zip
Expand-Archive -Force -LiteralPath 'antidote.zip' -DestinationPath .
.\antidote.exe -h

{% endtab %}

{% tab title=”Linux (x64)” %}

curl -Lo antidote.tar.gz https://github.com/nre-learning/antidote-core/releases/download/v0.7.0/antidote-linux-amd64.tar.gz
tar xvzf antidote.tar.gz
./antidote -h

{% endtab %}
{% endtabs %}

Note that this will result in the antidote binary being made available in the current directory. You may wish to either add this directory to your PATH, or move the binary to one that already is. The remainder of this documentation will assume you’ve done this, so that you can simply run the command antidote from anywhere. You can of course instead run the binary via the relative path shown in the final command above if you wish, it will work fine the same way.

Create Curriculum Resources

The antidotetool comes with the ability quickly bootstrap a new resource, such as a lesson. This provides you with an interactive wizard that walks you through all of the fields within a resource definition, and creates a barebones framework for that lesson. In the case of a lesson, this not only creates the required lesson.meta.yaml file, but also all of the files and directories required by that lesson.

You can access this wizard by simply running antidote <resource> create. So, to create a new lesson, run antidote lesson create. You’ll immediately be presented with a series of prompts to provide the necessary information to bootstrap that lesson:

{% embed url=”https://www.youtube.com/watch?v=G3sM_5rk2yc” %}

Similar commands may exist for other resources like images and collections.

Note that this tooling isn’t designed to build a finished lesson, only a starting point. There’s still a lot left to do at the end of these wizards, so pay close attention to the hints at the end of the wizard for next steps.

Next thing you’ll want to do is bookmark the Antidote Object Reference. All curriculum resources, such as lessons, are defined “as-code”, meaning they are all defined using simple text files stored in Git. This documentation is vital for knowing what kind of things you can use to create an awesome lesson, so read that carefully, and follow the instructions there, whether you’re creating a new lesson, or modifying an existing one.

Validating an Existing Curriculum

One of the things syrctl can do for us is validate lesson content to make sure it has all of the basics to work properly. This is done via the sub-command syrctl validate. This command is directed at a curriculum directory in order to work: for instance, we have the NRE Labs curriculum installed locally:

~$ ls -lha
total 68K
drwxr-xr-x 6 mierdin mierdin 4.0K Apr 21 22:52 .
drwxr-xr-x 10 mierdin mierdin 4.0K Apr 15 23:19 ..
drwxrwxr-x 3 mierdin mierdin 4.0K Apr 17 17:39 collections
drwxr-xr-x 8 mierdin mierdin 4.0K Apr 23 21:27 .git
drwxr-xr-x 18 mierdin mierdin 4.0K Apr 6 12:49 images
drwxr-xr-x 5 mierdin mierdin 4.0K Apr 21 22:52 lessons
-rw-r--r-- 1 mierdin mierdin 5.2K Apr 21 22:54 CHANGELOG.md
-rwxr-xr-x 1 mierdin mierdin 500 Apr 15 15:19 check-changelog.sh
-rw-rw-r-- 1 mierdin mierdin 0 Apr 21 13:04 curriculum.meta.yaml
-rw-r--r-- 1 mierdin mierdin 33 Apr 6 12:49 .dockerignore
-rw-r--r-- 1 mierdin mierdin 573 Apr 6 12:49 .gitignore
-rw-r--r-- 1 mierdin mierdin 12K Apr 6 12:49 LICENSE
-rw-r--r-- 1 mierdin mierdin 1.1K Apr 15 18:56 README.md
-rw-r--r-- 1 mierdin mierdin 288 Apr 6 12:49 .travis.yml
-rwxr-xr-x 1 mierdin mierdin 288 Apr 15 15:19 validate-lessons.share

We’re already cd’d into this directory, so we just need to run syrctl validate . to instruct syrctl to validate the local directory:

~$ syrctl validate .
INFO[0000] Successfully imported lesson 14: Introduction to YAML --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 0, CONNECTIONS: 0
INFO[0000] Successfully imported lesson 16: Using Jinja for Configuration Templates --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 0, CONNECTIONS: 0
INFO[0000] Successfully imported lesson 17: Version Control with Git --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 0, CONNECTIONS: 0
INFO[0000] Successfully imported lesson 19: Working with REST APIs --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 3, CONNECTIONS: 4
INFO[0000] Successfully imported lesson 22: Introduction to Python --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 0, CONNECTIONS: 0
INFO[0000] Successfully imported lesson 23: Linux Basics --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 0, CONNECTIONS: 0
INFO[0000] Successfully imported lesson 12: Network Unit Testing with JSNAPY --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 3, CONNECTIONS: 3
INFO[0000] Successfully imported lesson 13: Multi-Vendor Network Automation with NAPALM --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 1, CONNECTIONS: 0
INFO[0000] Successfully imported lesson 15: Event-Driven Network Automation with StackStorm --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 3, CONNECTIONS: 3
INFO[0000] Successfully imported lesson 18: End-to-End Network Testing with ToDD --- BLACKBOX: 0, IFR: 0, UTILITY: 2, DEVICE: 1, CONNECTIONS: 2
INFO[0000] Successfully imported lesson 24: Junos Automation with PyEZ --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 1, CONNECTIONS: 1
INFO[0000] Successfully imported lesson 25: Juniper Extension Toolkit (JET) --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 1, CONNECTIONS: 1
INFO[0000] Successfully imported lesson 26: Vendor-Neutral Network Configuration with OpenConfig --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 1, CONNECTIONS: 1
INFO[0000] Successfully imported lesson 29: Using Robot Framework for Automated Testing --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 1, CONNECTIONS: 1
INFO[0000] Successfully imported lesson 30: Network Automation with Salt --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 1, CONNECTIONS: 1
INFO[0000] Successfully imported lesson 31: Terraform & Junos --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 3, CONNECTIONS: 3
INFO[0000] Successfully imported lesson 21: Automating the Troubleshooting Chain --- BLACKBOX: 2, IFR: 0, UTILITY: 2, DEVICE: 3, CONNECTIONS: 6
INFO[0000] Successfully imported lesson 32: Automated STIG Compliance Validation --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 1, CONNECTIONS: 0
INFO[0000] Successfully imported lesson 33: Quick and Easy Device Inventory --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 2, CONNECTIONS: 0
INFO[0000] Successfully imported lesson 34: Automated Device Configuration Backup --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 2, CONNECTIONS: 0
INFO[0000] Successfully imported lesson 35: Device Specific Template Generation --- BLACKBOX: 0, IFR: 0, UTILITY: 1, DEVICE: 2, CONNECTIONS: 0
INFO[0000] Imported 21 lesson definitions.
All detected lesson files imported successfully.

This runs the exact same logic that syringed would use to load lessons on the server-side, so this is a really handy way to make sure the basics of curriculum definitions are done correctly.

On the NRE Labs Curriculum repository [https://github.com/nre-learning/nrelabs-curriculum], we’re actually running syrctl validate on every new Pull Request to ensure things are set up properly, as much as possible.

There are things it won’t check - like the validity of a network configuration, or that your Docker image is built properly, but in terms of the things that Syringe requires, it will give you confidence in a stable starting point, rather than reading through a list of points in this doc.

Communicating Your Idea

So, you want to contribute to the NRE Labs curriculum! Great, and thank you! Please read on for some helpful hints that will guide you along the process and ensure your time is spent wisely.

The NRE Labs curriculum should be treated like any other open source project. It’s built via contributions from all over the world, all the time. So before getting started, you should first spend time communicating your plans with the rest of the community.

First, peruse the existing GitHub issues [https://github.com/nre-learning/nrelabs-curriculum/issues] to see if anyone is already working on something similar to what you have in mind. Maybe someone else is looking to build a similar lesson, and this gives you the opportunity to combine forces with these existing efforts if they exist. A single lesson that covers all the bases is way better than two similar lessons that have overlap and confuse the learner. If this exists, post to that issue and indicate you’d like to contribute.

If no existing issue exists, you should open an issue [https://github.com/nre-learning/nrelabs-curriculum/issues/new] for yourself so the community can have a chance to provide feedback on your idea before you spend time building it. This will save you a lot of headache in the future.

In this issue, provide as much detail as you can, such as your target audience, and what learners should be expected to get out of this lesson. Remember that this is learning content, so it’s not enough to just have a bunch of commands for the learner to run - they should be able to get something tangible from your lesson that they can immediately apply in their day-to-day work.

If you’re building a lesson, it’s important that you include an outline of what will be contained within the lesson. Each lesson is built of multiple stages, so you should be able to summarize each in a bullet. Note that each stage should follow some kind of natural progression, and should take no more than 10 minutes for the learner to finish.

Open a Pull Request

In First Steps, you learned to use the antidoteCLI tool to bootstrap and validate your new content. It is now time to push these changes to GitHub, and open a Pull Request. This will allow you to use the Preview Service to see your new content in action, as well as eventually get this content merged into the main curriculum repository.

{% embed url=”https://www.youtube.com/watch?v=mfEVoV7FiE0” caption=”This video is a brief introduction to opening a PR for NRE Labs” %}

Commit and Push

Once you’ve made some changes, you might be wanting to save your progress in Git so that you can track your progress. It’s generally good practice to make commits [https://git-scm.com/book/en/v1/Git-Basics-Recording-Changes-to-the-Repository#Committing-Your-Changes] somewhat often so that if you make mistakes, you can roll back easily.

Once you’ve made some commits, you’ll want to “push” them. This ensures that the branch you have locally is replicated to your fork:

git push origin <your branch>

Create a Pull Request

Once you have commits pushed, you can open a Pull Request, which is a way of saying “I have changes in my fork that I would like you to pull into the main repository”. You may feel like you should wait to open a Pull Request until you’re “done”, which is totally okay. However, opening a Pull Request early, even right as you’re starting work is not only okay too, but also encouraged. Any commits you push after opening the Pull Request will get added automatically, and it gives you a chance to open a dialog with reviewers. So don’t be afraid to go down this path early.

If you navigate to the GitHub page for your fork, you’ll notice that there’s a little bar that says you’re X commits ahead of the main repository, with some buttons next to it that let you open a Pull Request:

[image: ../_images/branchchanges.png]

Make sure the correct branch is selected in the drop-down to the left, and then click “Pull Request” on the right. This will take you to the upstream repository to open a new Pull Request:

[image: ../_images/pullrequest.png]

Be descriptive here - let folks know what you’re working on and what state it’s in. Feel free to use the description to summarize any outstanding work you have to do, if you’re not quite finished.

Note the dropdown gives two options for opening a Pull Request. If you’re not finished with your work, feel free to open a “draft” pull request - this gives reviewers a clear signal that you’re not done, so any comments will be given in that light.

Fixing Problems

When you open a Pull Request, there are a number of automated processes that take place. First, a series of automated checks run on your contribution to ensure it meets basic technical standards. The Antidote CLI tool is actually used behind the scenes to validate the syntax of all curriculum resources, and a few additional scripts kick off to do basic housekeeping things like ensuring the CHANGELOG is updated.

If any of these checks fail, the GitHub status checks will indicate this failure. Reviews or automated reviews won’t take place until these checks pass, so if you see a failure, click through to the TravisCI build information to see where the failure happened.

[image: ../_images/screenshot-from-2020-04-20-15-45-57.png]

Once your Pull Request is open, you’re ready to start using the Preview Service to see a live preview of your changes.

Bootstrapping Your Content

Once you have a plan in place and have communicated it to the community, it’s time to create your lesson.

First, fork the NRE Labs curriculum GitHub repository [https://github.com/nre-learning/nrelabs-curriculum/fork]. This allows you to create a copy of the curriculum at a location of your choosing (usually underneath your own Github username) that you have permissions to push to. In a future step, when you’re ready to contribute your changes, we’ll open a Pull Request to bring your changes back into the upstream curriculum repo.

Once you have your fork, you can clone it to your local filesystem. This is where you’ll make all the changes you have planned for your curriculum contribution.

{% tabs %}
{% tab title=”SSH” %}

git clone git@github.com:<insert your username here>/nrelabs-curriculum.git
cd nrelabs-curriculum/

{% endtab %}

{% tab title=”HTTP” %}

git clone http://github.com/<insert your username here>/nrelabs-curriculum.git
cd nrelabs-curriculum/

{% endtab %}
{% endtabs %}

And this is where we arrive at a bit of a weak spot in our current tooling. In an upcoming effort to re-vamp the Antidote platform, we’re hoping to introduce new command-line tools for creating new content. The idea is that you could run a command like antidote lesson new and it will run you through an interactive wizard to create new content as easily as possible.

Unfortunately, until this is done, the best thing to do is look for an existing lesson, copy it, and tweak it to meet your needs. So for now, look for examples in the lessons/ sub-directory of the curriculum that are similar to the idea for a lesson you have in mind, create a copy of that entire lesson directory (using cp -r <existing lesson directory> <new lesson directory>) and then make edits to the new copy. The Antidote documentation [https://antidoteproject.readthedocs.io/en/latest/platform/curricula/lessons/index.html] will help with understanding the various files and fields you’ll need to know about.

We’re aware this makes for a fairly poor experience, and we’re actively working to improve the Antidote tooling to make this a lot easier. In the meantime, the existing syrctl validate [https://antidoteproject.readthedocs.io/en/latest/platform/architecture/syringe/syrctl.html] command does allow you to at least check to ensure the copied content you’ve created meets the basic standards. Please stay tuned to the Antidote Mini-Project 1 (MP1) [https://community.networkreliability.engineering/c/antidote-platform-project-management/mp1-syringe-redesign] for updates on new tooling to make lesson content easier to bootstrap.

Curriculum Release Process

The NRE Labs curriculum is managed like any software project, with regular, planned release cycles. The lifecycle of a curriculum release is performed in four discrete steps.

Step 1 - Release Kickoff

At the beginning of a release cycle, we’ll have a “kickoff” during one of the weekly standups. This kickoff is primarily focused on establishing the basic parameters of the release, beginning the process of gathering deliverables intended for the release, and to ensure everyone knows where to find the latest information on progress.

In this first kickoff, we’ll begin gathering ideas for things we want to get done in this release. These will be retrieved from various sources:

	Open issues or PRs in the curriculum repo - comb and triage; Which are ready to be worked on, or are most imminent?

	Ideas from the community not yet documented formally

	Tasks needed for updating the curriculum to be compatible with a new platform version (if applicable)

	Any tasks that need to be done to bring the existing curriculum in line with the targeted Antidote platform version

While the kickoff is meant to get a starter list together, it’s likely that more ideas will come up at any time in the release cycle. This is normal, and expected. However, the first week of a release cycle should strive to ensure the really important things are well-documented and if possible, assigned.

Another very important task for this initial meeting is to decide which Antidote platform this curriculum release will target. If a new version is desired, PTR will be immediately updated to that stable release at the beginning of the curriculum development cycle. Similarly, the selfmedicate should also be updated with this version, and curriculum developers should re-pull on this repository to get the latest manifests.

A project plan for the release that represents the work discussed in the previous week will be posted to the curriculum repo’s projects list [https://github.com/nre-learning/nrelabs-curriculum/projects] and presented to attendees. This is a kanban-board style project planning tool that allows all to easily see the state of work for a given release.

Finally, a post will be created in the Curriculum Project Management [https://discuss.nrelabs.io/c/curriculum-project-management] topic to notify everyone that the work on this release has begun, with the title “Release Kickoff…”. This forum thread should serve as the center of all release planning discussions, and all are welcome to participate. If you have something you think should be included in or excluded from the release plan, speak up there.

Not all work fits neatly into a release plan, and that’s okay. Especially in the curriculum, contributions of any kind can reasonably take place at any time. The purpose of a release plan isn’t to put limits on the work that can be done for a release, but rather to ensure that the important things that really need to get done are accounted for. If you want to work on something that’s not explicitly asked for in the release plan, that’s totally fine.

Step 2 - Development Work

Once a release cycle is kicked off, the only thing left to do is….do the work! At this point, a relatively complete list of things to do for this release should be captured in a Github project, which will be linked to in the community forum kickoff post. Contributors can use this as a guide, or do other work they think is useful.

The curriculum contribution guide should be consulted repeatedly to ensure you’re on the right track with respect to curriculum contributions. All of those guidelines apply here. It’s important for contributions to follow this lifecycle, so that release managers can properly coordinate work across the project.

The selfmedicate development environment should also be used to locally preview curriculum content that is being developed.

Step 3 - Testing Phase

At some point, the list of tasks that are meant to be tackled for a given release are complete, and it’s time to initiate the process of cutting a release, and getting it into production.

The first step in this process is to ensure the latest changes in the master branch of the curriculum are properly represented in the PTR. This should automatically happen nightly, but someone from the NRE Labs Ops team will make sure this is true.

A forum topic will be posted to Curriculum Project Management [https://discuss.nrelabs.io/c/curriculum-project-management]_ with the title “Testing Curriculum Release vX.X.X”. This will contain a link to the testing procedure, and a summary of the CHANGELOG at that point in time, so that new content can be tested properly. For a minimum of seven days from the date of the post, contributors should test the site as it exists in PTR, and submit feedback.

The best way to provide feedback is via a response to that original forum topic, or a Github issue in the curriculum repository.

Instead of submitting feedback, you may feel like you can just fix it yourself in a Pull Request. This is always welcome and appreciated, and is often the easiest way to make your first contribution to the curriculum. So, don’t be shy! See the curriculum contribution guide for more info on how to do this.

The curriculum maintainers will stay on top of feedback and strive to ensure that all problems are either fixed via a Pull Request, or documented via an Issue for a future release. The Testing Phase will not end until the maintainers are comfortable that the latest master, as represented via the PTR site represents a healthy curriculum.

Step 4 - Release and Deployment

Once the testing phase has completed, the NRE Labs Ops team will execute a workflow that creates the target version release for the curriculum, and will deploy this version to production.

In addition, if this curriculum release is meant to target a new version of the Antidote platform, the production site should also be updated accordingly.

In the following week (or at most two), the cycle will repeat, and a new release kickoff will take place.

Appendix - Platform Targeting

The NRE Labs curriculum is released separately from the underyling Antidote platform. As a result, the platform’s release cycle will charge ahead with new features, and it’s up to the curriculum release planning to “target” a stable version of the platform to develop against. The below image shows an example of how this might work:

[image: ../_images/curriculum_target.png]

At the time the curriculum started on its own release cycle, v0.4.0 of the platform was released simultaneously with v1.0.0 of the NRE Labs curriculum. In the future, the curriculum may want to release a new version before v0.5.0 of the platform is ready. In this case, the curriculum, starting with v1.1.0 will continue to target v0.4.0 until a suitable stable platform release is ready.

First Steps

So, you want to contribute to the NRE Labs curriculum! Great, and thank you! Please read on for some helpful hints that will guide you along the process and ensure your time is spent wisely.

Before you get started, please read the NRE Labs Curriculum Standards [https://github.com/nre-learning/nrelabs-curriculum/blob/master/CONTRIBUTING]. This is the document used by all content reviewers to ensure curriculum quality remains high, and all contributions must adhere to these standards.

NOTE for Open Source Maintainers - we would love the opportunity to host tutorials for your project. If you’ve created or are maintaining an open source project you should have the right of first refusal for contributing a lesson on your project in the NRE Labs curriculum.

{% embed url=”https://www.youtube.com/watch?v=HOU5k77RQNc” caption=”This video will walk you through some of the basics.” %}

Some helpful tips before getting started:

	Communicate your Idea - The NRE Labs curriculum should be treated like any other open source project. It’s built via contributions from all over the world, all the time. So before getting started, you should first spend time communicating your plans with the rest of the community. Peruse the existing GitHub issues [https://github.com/nre-learning/nrelabs-curriculum/issues] to see if anyone is already working on something similar to what you have in mind. Maybe someone else is looking to build a similar lesson, and this gives you the opportunity to let them know, and combine forces. lf you are looking to collaborate on a lesson, opening an issue [https://github.com/nre-learning/nrelabs-curriculum/issues/new] is often a good way to see if anyone in the community is interested in helping out.

	Do You Need New or Changed Images? - If your lesson will require new software images not already in the curriculum (or edits to an existing image), we have a dedicated document for handling Endpoint Images in NRE Labs, and you should definitely read this first. In the event that you need a new image or a modified image for your lesson, this must be handled first, ahead of any content contributions that may need them.

Create a Fork and Branch

The NRE Labs curriculum is maintained on GitHub [https://github.com/nre-learning/nrelabs-curriculum]. As is the case with many open source projects, contributing to the NRE Labs curriculum involves a workflow called “Fork and Pull”. This workflow involves making your own copy of the curriculum (known as a “fork”), making changes there, and then submitting a Pull Request to bring your changes back into the main curriculum repository.

If you’re not familiar with Git, we actually have a lesson that you might find useful [https://nrelabs.io/labs/?lessonSlug=git-version-control&lessonStage=0]. It’s not specific to the NRE Labs curriculum, but if you’re totally new to Git, it deals with all of the fundamentals you’ll need to return to this document and follow the instructions to contribute to the curriculum.

Before you get started, please ensure you’ve added your SSH key to your GitHub profile [https://help.github.com/en/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account]. These instructions will assume that you’ve already done this, and will use SSH-based URLs for cloning and pushing commits.

To do this, click the “Fork” button in the top right of the NRE Labs Curriculum repository [https://github.com/nre-learning/nrelabs-curriculum]:

[image: ../_images/fork.png]

Next, GitHub will ask you where you want to place the fork. Remember, this is like making a copy, so it’s asking where you want the copy of that repository to go. Usually, people select their own username. Doing that will result in a repository under your own GitHub username like so:

https://github.com/<your username here>/nrelabs-curriculum

Now that you have created a fork, you need to create a local copy of that fork so that you can actually work with the files. This is called “cloning” the repository [https://git-scm.com/book/en/v1/Git-Basics-Getting-a-Git-Repository#Cloning-an-Existing-Repository]:

{% tabs %}
{% tab title=”SSH” %}

git clone git@github.com:<insert your username here>/nrelabs-curriculum.git
cd nrelabs-curriculum/

{% endtab %}

{% tab title=”HTTP” %}

git clone http://github.com/<insert your username here>/nrelabs-curriculum.git
cd nrelabs-curriculum/

{% endtab %}
{% endtabs %}

This will result in a new directory at your current path callednrelabs-curriculum. Next, enter this directory and create a new branch (replacing new-branch-namewith the name of your choice):

cd nrelabs-curriculum/
git checkout -b new-branch-name

Bootstrap Your Content

Next, you’ll need the Antidote CLI. This is the command-line tool for bootstrapping new content for NRE Labs like lessons. Install this tool using the instructions provided, and then follow the instructions here to bootstrap a new curriculum resource such as a lesson. These interactive wizards will create a skeleton copy of a new resource within your existing curriculum directory, which you can then use as a starting point.

{% embed url=”https://www.youtube.com/watch?v=G3sM_5rk2yc” caption=”Here’s a light introduction to using the Antidote CLI to bootstrap an example lesson” %}

Once finished with the initial bootstrap, you’ll also want to validate your local curriculum. This validation step can identify any problems with what you’ve built, and is a necessary next step after the initial bootstrap. The NRE Labs CI pipeline uses this command to validate that the curriculum is well-formed, so it’s worth it to run this locally yourself first.

If you run into problems here, you may consider moving to the next phase, and open a pull request anyways. This way, maintainers will be able to see what you’ve done thus far, and provide suggestions.

Preview Your Changes

When building your content, eventually you’ll reach the point where you want to see how it will appear on the NRE Labs site. This is possible simply by opening a Pull Request, which we covered in the previous step.

When you open a Pull Request, like any other software project, a series of automated checks take place to ensure some of the basics are in place. These include things like checking to make sure the CHANGELOG has been updated, some simple spellchecking, and validation of the lesson layout and metadata.

When you open a Pull Request, these checks immediate appear in the portion of the page highlighted in red below:

[image: ../_images/0-build-status.png]

These basic checks happen first and if there are any problems here, the automated process stops, and will not continue until those problems are addressed.

[image: ../_images/5-prebuild-failed.png]

At any stage, including failures like the one pictured above, you can click on “Details” to the right of each check, to get more information about the progress of each check. Note that all checks labeled “Required” must pass in order for your Pull Request to be accepted, but that doesn’t mean that if it does pass that your PR can be merged immediately - other changes may be requested by project maintainers beyond the simple checks performed here.

If the initial checks do pass, your contribution will go through a build process, which should only take a few minutes or less. This process will first build any endpoint images that have changed in your PR:

[image: ../_images/3-building.png]

This is another step that could fail. For instance, if your image’s Dockerfile contains some kind of error, or something else causes the build process to fail, the corresponding check above will fail, and you can click “Details” to view the build logs for that step. This will allow you to see exactly what failed, and identify a next step for fixing the problem.

[image: ../_images/7-image-build-failed-details.png]

You should first ensure that your images build on their own on your local machine before pushing them into your Pull Request. Please do not use this system as a way of iterating through the creation of an image from scratch, but rather as a last step to ensure an image that you believe is close to being finished, truly satisfies the requirements of the NRE Labs platform.

Once you’ve made the necessary changes to resolve any problems that have come up until now, you should get something that looks like the below screenshot, indicating a successful preview deployment.

[image: ../_images/4-build-success.png]

The check annotated with the number “1” is the main preview check, and you can click “Details” to be taken to a page that contains not only the link to your preview, but some other helpful troubleshooting information. The check labeled “2” contains logs for the preview infrastructure itself. Combined, these should provide you with some tools to troubleshoot if things go wrong, so do check them out.

If you click on “Details” for the main preview check, you’ll see the following page:

[image: ../_images/4b-build-success-details.png]

When you click the “Open Preview” link contained there, you’ll notice it will take you to a semi-random URL, like:

https://preview-123abcde.nrelabs.io/

This is a randomly-generated URL for the preview for your pull request, and a new one is generated every time you make a change. This is not just a single lesson, but rather a self-contained instance of the full NRE Labs platform. This means that your preview URL will take you to what looks like the main NRE Labs site, but in fact this site is updated with the changes you’ve made. So, to see your changes, go through the lesson catalog and find your lesson, and launch it, just like you would on the main NRE Labs site.

More than likely, you’ll still want to change things. Maybe the lesson works great, but you made a typo, or forgot to include a command in the lesson guide. Or maybe you forgot to install a dependency in the endpoint image. This is fine, and expected - simply continue to push commits to the branch you pushed as part of opening a Pull Request in the previous step, and a new preview will be built from the beginning.

Please try to consolidate your commits, so the preview system can keep up with generating previews for everyone. Don’t just push a bunch of small commits and minor changes, rather, try to bunch your changes into a few commits and push when you feel you have made all the changes you wanted to make. The project maintainers reserve the right to close Pull Requests and take other preventative actions in response to abusive behavior. If needed, maintainers may also request that you squash your commits prior to merging, or else they’ll have to squash them on merge as a last resort.

description: >-
The “Self-Medicate” tool provides a way to run the full NRE Labs stack on your
laptop.

Previewing Locally

If you’ve made changes to the NRE Labs curriculum and are looking to contribute them, you’ll probably want to find a way to run them locally yourself before opening a pull request. The selfmedicate [https://github.com/nre-learning/antidote-selfmedicate] tool is a way to get a local version of NRE Labs running on your own machine. This allows you to see how your lesson actually performs, before you open a Pull Request.

Preparing the Environment

In the last section, you cloned your fork of the NRE Labs curriculum to your own machine. If this is still the working directory in your shell, navigate to the parent directory like so:

cd ../

The important thing at this point is that your shell should currently be located at the parent directory of the NRE Labs curriculum. Next, clone and enter the selfmedicate repository:

git clone https://github.com/nre-learning/antidote-selfmedicate
cd antidote-selfmedicate/

{% hint style=”info” %}
Please remember that changes are being made to selfmedicate all the time. If you encounter issues, the very first thing you should try before you open an issue is to make sure you have the latest copy of this repository by doing a git pull on the master branch.
{% endhint %}

For maximum compatibility across operating systems, we deploy selfmedicate in a Vagrant environment, so that it can run in a consistent, properly configured virtual machine with all of the dependencies needed. As a result, you’ll need a hypervisor. Selfmedicate officially supports Virtualbox [https://www.virtualbox.org/wiki/Downloads] as it is widely supported across operating systems as well as the automation we’ll use to get everything spun up on top of it.

Next, you’ll need Vagrant [https://www.vagrantup.com/docs/installation/]. Vagrant allows us to define a virtual environment in the selfmedicate repository that automatically contains all of the software dependencies needed to make Antidote work.

{% hint style=”info” %}
The Self-Medicate Vagrantfile starts a VM with 4GB of RAM and 2 vCPUs by default. While this is not a strict requirement, it’s a reasonable default. You’re free to edit this if you know what you’re doing.
{% endhint %}

There are some required Vagrant plugins as well (you only need to run these once).

vagrant plugin install vagrant-vbguest
vagrant plugin install vagrant-hostsupdater

To start the Vagrant environment for selfmedicate, run:

vagrant up

Once this is done, the environment should be ready to access at the URL shown by the script.

The Selfmedicate Script

In the last section, we started a Vagrant machine with all of the prerequisites installed for running the Antidote platform. In this section, we’ll dive a little bit into the selfmedicate tool specifically, so you are able to use it to iterate on lesson content and quickly preview the changes you’ve made.

These instructions assume you’ve followed the previous section, and now have a running Vagrant machine. If not, please do that now before continuing.

Open an SSH connection to the Vagrant machine:

vagrant ssh

The rest of the selfmedicate instructions will take place within this environment.

The selfmedicate.sh script is our one-stop shop for managing the development environment. This script has several subcommands:

./selfmedicate.sh -h
Usage: selfmedicate.sh <subcommand> [options]
Subcommands:
 start Start local instance of Antidote
 reload Reload Antidote components
 stop Stop local instance of Antidote
 resume Resume stopped Antidote instance

options:
-h, --help show brief help

In rare circumstances, you might need to run the start, stop, or resume commands. However, these commands have been wired up to the Vagrant environment in such a way that this shouldn’t be necessary.

The main command you’ll probably want to run within the Vagrant environment is the reload subcommand. This allows Antidote to re-import curriculum content:

./selfmedicate reload

Troubleshooting Self-Medicate

The vast majority of all setup activities are performed by the selfmedicate script. The idea is that this script shoulders the burden of downloading all the appropriate software and building is so that you can quickly get to focusing on lesson content. However, issues can still happen. This section is meant to direct you towards the right next steps should something go wrong and you need to intervene directly.

The selfmedicate script is designed to make it easy to configure a local minikube environment with everything related to Antidote installed on top. However, you’ll always be well-served by becoming familiar with minikube or even Kubernetes itself so that you are more able to troubleshoot the environment when things go wrong.

Before asking for help, please first answer these questions:

	Have you read this page in its entirety?

	Have you run a git pull on the latest master branch of the Self-Medicate and Curriculum repos?

	Have you looked at the Common Selfmedicate Issues?

If you answered “yes” to all of these questions, please open an issue on the selfmedicate repository [https://github.com/nre-learning/antidote-selfmedicate/issues/new] and ensure you follow the instructions provided there.

The self-medicate tool comes with a debug subcommand which runs a series of commands for extracting information that will be needed for any troubleshooting activity. To run this subcommand and place all output in a file called selfmedicatedebug.txt, run the below:

./selfmedicate.sh debug > selfmedicatedebug.txt

When opening an issue on the Self-Medicate repository linked above, this information will be required to move forward with troubleshooting any issues, so please create a new Github Gist [https://gist.github.com/] and paste the link into the relevant spot in your issue. Please do not paste the debug contents into a Github Issue directly.

Common Self-Medicate Issues

All of the steps below assume a working Vagrant environment, and a working persistent connection to this virtual machine via vagrant ssh.

Cannot Connect to the Web Front-End

It’s likely that the pods for running the Antidote platform aren’t running yet. Try getting the current pods:

~$ kubectl get pods
NAME READY STATUS RESTARTS AGE
antidote-web-99c6b9d8d-pj55w 2/2 Running 0 12d
nginx-ingress-controller-694479667b-v64sm 1/1 Running 0 12d
syringe-fbc65bdf5-zf4l4 1/1 Running 4 12d

You should see something similar to the above. The exact pod names will be different, but you should see the same numbers under the READY column, and all entries under the STATUS column should read Running as above.

In some cases the STATUS column may read ContainerCreating. In this case, it’s likely that the images for each pod is still being downloaded to your machine. You can verify this by “describing” the pod that’s not Ready yet:

kubectl describe pods -n=kube-system kube-multus-ds-amd64-ddxqc
Name: kube-multus-ds-amd64-ddxqc
....truncated....
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 19s default-scheduler Successfully assigned kube-system/kube-multus-ds-amd64-ddxqc to minikube
Normal Pulling 17s kubelet, minikube pulling image "nfvpe/multus:latest"

In this example, we’re still waiting for the image to download - the most recent event indicates that the image is being pulled. The selfmedicate.sh script has some built-in logic to wait for these downloads to finish before moving to the next step, but in case that doesn’t work, this can help you understand what’s going on behind the scenes.

If you’re seeing something else, it’s likely that something is truly broken, and you likely won’t be able to get the environment working without some kind of intervention. Please open an issue on the antidote-selfmedicate repository [https://github.com/nre-learning/antidote-selfmedicate/issues/new] with a full description of what you’re seeing.

Lesson Times Out While Loading

Let’s say you’ve managed to get into the web front-end, and you’re able to navigate to a lesson, but the lesson just hangs forever at the loading screen. Eventually you’ll see some kind of error message that indicates the lesson timed out while trying to start.

This can have a number of causes, but one of the most common is that the images used in a lesson failed to download within the configured timeout window. This isn’t totally uncommon, since the images tend to be fairly large, and on some internet connections, this can take some time.

There are a few things you can try. For instance, kubectl describe pods <pod name>, as used in the previous section, can tell you if a given pod is still downloading an image.

We can also use docker commands to check the list of docker images that have been successfully pulled:

docker image list

Review and Merge

ALL contributions to the NRE Labs curriculum must be done via a Pull Request, and Pull Requests can only be merged to masterwith an approving review from a project maintainer. This is not a hostile, arbitrary gate-keeping function, but rather a way of ensuring quality remains high for the curriculum.

With the exception of very small Pull Requests to fix things like typos, the chance that your Pull Request will be merged immediately with no suggested changes is very low. However, the good news is, that’s okay, and expected. The job of a project maintainer is to get pull requests merged, not closed. So, you should expect that your pull request will likely generate questions, and probably some suggested changes. However, you can also expect the following behavior from any project maintainer:

	All comments/questions will be constructive in nature, aimed at helping you as a contributor, and the overall project grow.

	We always want to end every pull request in a “merge” if at all possible. Every question or suggestion is aimed at putting you closer to getting your contribution into the project.

All reviews will be aimed at keeping the quality of the curriculum high. Please read the Curriculum Quality Standards and do your best to ensure that your content strives to meet those standards - it will make the review process a lot smoother.

Once your Pull Request is merged, it will be automatically included in the next release of the curriculum, and published on the site when that process finishes.

Contributing Your Content

Once you’ve followed the previous steps, you’re ready to actually build a lesson and contribute it upstream.

Contributions of any kind are welcome. New lessons are cool, but so are modifications, additions, or even minor fixes to existing content. No contribution is too small!

Content Development

You’ll want a local copy of the Antidote stack running locally so you can rapidly test and iterate on the changes you’ve made. Ironing out all of the bugs locally before you submit a pull request makes the review process much smoother. This was covered in the previous step.

Next thing you’ll want to do is bookmark the Antidote Object Reference. All curriculum resources, such as lessons, are defined “as-code”, meaning they are all defined using simple text files stored in Git. This documentation is vital for knowing what kind of things you can use to create an awesome lesson, so read that carefully, and follow the instructions there, whether you’re creating a new lesson, or modifying an existing one.

Finally, you’ll definitely want to download syrctl, the command-line tool that will serve as your best friend when contributing to the NRE Labs curriculum. With this tool, you can easily create a new lesson skeleton, or validate existing lesson content, so you don’t have to wonder if you’ve built a lesson correctly.

At this point, you’re ready to make the changes to your copy of the NRE Labs curriculum. Make commits, and push them to your fork as you see fit. Try to keep commit messages relevant and descriptive.

Get It Reviewed and Merged

Eventually, you’ll arrive at the point where the content you’re able to see in your local copy of Antidote looks like it’s ready for prime time. You’ve made all the changes you plan to make, and you’ve added them to your fork via pushed commits. At this point, you’re ready to open a pull request [https://github.com/nre-learning/nrelabs-curriculum/pull/new].

The link above will prompt you to specify your fork and branch you wish to “pull from” into the main NRE Labs curriculum. Select the appropriate fork and branch, and then fill out the description for the pull request. If you are opening this PR in response to an issue (whether you opened it or not) and you feel it addresses everything in that issue, you can say Closes <insert link to issue here> in your description, and when the PR is merged, the referenced issue(s) will be closed automatically.

At this point, the next step is for a reviewer to approve or make suggestions for a second round of edits for your content. Note that the goal for each and every review is not to nitpick or make it difficult to contribute to NRE Labs, but rather to ensure the content is reflected in the best light possible. Be patient and willing to adapt to feedback. It might be useful to take a peek at the curriculum review standards as that covers everything that a curriculum reviewer will be looking for.

If you are a maintainer or creator for an open source project in the infrastructure or automation space, the Antidote project would love to have you. We feel very strongly that if you’re maintaining an open source project, that you should have the right of first refusal for representing it in the NRE Labs curriculum. Please get in touch with us on the community forums [https://discuss.nrelabs.io] and we’ll make every effort to bring you up to speed with the environment so that you can show off your project on the site.

Curriculum Standards

ALL contributions to the NRE Labs curriculum must be done via a Pull Request, and Pull Requests can only be merged to master if the latest commit on that Pull Request’s branch satisfies all of these requirements:

	Passes all Github CI checks

	Has a valid “accepted” review from a curriculum committer that is different from the PR creator.

These are meant to be done in order. There is no point in conducting a review until all Github CI checks pass. However, once these are passing, the next step is for a reviewer to approve or make suggestions for a second round of edits for your content. Note that the goal for each and every review is not to nitpick or make it difficult to contribute to NRE Labs, but rather to ensure the content is reflected in the best light possible. Be patient and willing to adapt to feedback.

Here are a few things that reviewers should be on the lookout for when reviewing new contributions to the curriculum, either for new or existing lessons. If you’re contributing to the curriculum, you should be aware of these guidelines, to make the review process much smoother.

(Hopefully) Automated Checks

The following should be automatically checked via the CI tooling, but please double-check, and if the CI tooling missed any of the below, please open an issue on the curriculum repo.

	Is the CHANGELOG updated properly?

	Does syrctl validate pass?

Content Quality

Quality is important in NRE Labs. Here are some general things to be on the lookout for.

	Is the relevance to the learner clear from this lesson? How easy is it for people

to link this content with their day-to-day?

	Does each lesson stage hit the target length of 5-10 minutes?

	Are the lesson guides easy to follow? Are they well-written,

with appropriate chunking, punctuation/grammar, and visuals?

Technical

It’s also very important that the curriculum takes maximum advantage of the underlying Antidote platform.

	Does this follow the Lesson Image Requirements?

	Does the lesson appropriately take advantage of Antidote’s optional features for content depth, like

optional objective verification or diverse presentations? How about lesson diagrams or videos?

	Do the configuration mechanisms in place for the Endpoints properly reverse/forward based on stage?

NRE Labs Public Test Realm (PTR)

NOTE - the PTR is currently offline. We recently re-launched NRE Labs at a new domain, and haven’t yet rebuilt the PTR environment. Please bear with us as we figure out a good path forward.

To allow the community to see the latest changes in the curriculum, and help with testing them to ensure they’re solid before going into production, a “public test realm” (PTR) [https://ptr.go.nrelabs.io] is maintained separately from the production site. It can be thought of as a daily-updated release candidate for the NRE Labs curriculum.

PTR is not meant to be used to test Antidote platform features. Both the production and PTR sites will be running the latest stable release of the Antidote platform for which a stable version of the curriculum has been released. The idea of PTR is to provide a sort of rolling release candidate for the curriculum itself.

The PTR is redeployed nightly from the latest master of the NRE Labs curriculum. This means that content that’s gone through the proper approval process should show up automatically within 24 hours.

As a result, PTR is inherently not guaranteed to be stable, and content in PTR should not be thought of as “perfect”. PTR is merely a representation of the current master branch of the curriculum - and because of that , it’s gone through at least one level of review. However, the presence of content in PTR is not an indication that the content is ready for production - that will have to wait for the release cycle to end.

The flow of content from contribution to PTR is outlined below:

[image: ../../_images/ptr_process.png]

As outlined in the previous sections, the curriculum is built to target a particular stable version of the Antidote platform. Since the PTR is primarily used as a function of the curriculum, when a new curriculum release cycle kicks off, and a platform version is identified, this version will be deployed to the PTR.

All curriculum content contains a tier field, which can be set to ptr in order to ensure that the content only shows on the PTR. If content is deemed to be ready for production, it will be “promoted” by setting this field to prod. Note that content with a prod tier must still be captured into a stable release to actually make it to the production site.

Previewing Locally

If you’ve made changes to the NRE Labs curriculum and are looking to contribute them, you’ll probably want to find a way to run them locally yourself before opening a pull request. The selfmedicate [https://github.com/nre-learning/antidote-selfmedicate] tool is a way to get a local version of NRE Labs running on your own machine. This allows you to see how your lesson actually performs, before you open a Pull Request.

Preparing the Environment

In the last section, you cloned your fork of the NRE Labs curriculum to your own machine. If this is still the working directory in your shell, navigate to the parent directory like so:

cd ../

The important thing at this point is that your shell should currently be located at the parent directory of the NRE Labs curriculum. Next, clone and enter the selfmedicate repository:

git clone https://github.com/nre-learning/antidote-selfmedicate
cd antidote-selfmedicate/

{% hint style=”info” %}
Please remember that changes are being made to selfmedicate all the time. If you encounter issues, the very first thing you should try before you open an issue is to make sure you have the latest copy of this repository by doing a git pull on the master branch.
{% endhint %}

Vagrant Environment

For maximum compatibility across operating systems, we deploy selfmedicate in a Vagrant environment, so that it can run in a consistent, properly configured virtual machine with all of the dependencies needed.

{% hint style=”info” %}
Running Self-Medicate within this Vagrant environment is the only supported option today. Linux users may wish to run the Self-Medicate script directly, to bypass the first layer of virtualization.

You’re welcome to go this route, of course, but you’ll be on your own. You’ll also want to make sure Docker, kubectl and minikube are all installed.
{% endhint %}

These instructions will spin up a virtual machine, so first, you’ll need a hypervisor. We support Virtualbox [https://www.virtualbox.org/wiki/Downloads] as it is widely supported across operating systems as well as the automation we’ll use to get everything spun up on top of it.

Next, you’ll need Vagrant [https://www.vagrantup.com/docs/installation/]. Vagrant allows us to define a virtual environment in the selfmedicate repository that automatically contains all of the software dependencies needed to make Antidote work.

{% hint style=”info” %}
The Self-Medicate Vagrantfile starts a VM with 8GB of RAM and 2 vCPUs by default. While this is not a strict requirement, it’s a reasonable default. You’re free to edit this if you know what you’re doing.
{% endhint %}

Vagrant’s vagrant-vbguest [https://github.com/dotless-de/vagrant-vbguest] __should also be installed. You only need to run this once.

vagrant plugin install vagrant-vbguest

To start the Vagrant environment for selfmedicate, run:

vagrant up

{% hint style=”info” %}
Selfmedicate is designed to do as much work as possible up-front, so that your development experience can be as positive as possible, and this includes downloading a bunch of large-ish image files. As a result, the first time you run this command can take some time. BE PATIENT.
{% endhint %}

Once this is done, the environment should be ready to access at the URL shown by the script.

If you need to pause your work, you can use the vagrant suspend command to suspend the Vagrant machine. Use vagrant resume when you’re ready to resume.

Finally, to interact with selfmedicate, you’ll need to open an SSH connection to the Vagrant machine:

vagrant ssh

The rest of the selfmedicate instructions will take place within this environment.

Contributing Your Content

Once you’ve followed the previous steps, you’re ready to actually build a lesson and contribute it upstream.

Contributions of any kind are welcome. New lessons are cool, but so are modifications, additions, or even minor fixes to existing content. No contribution is too small!

Content Development

You’ll want a local copy of the Antidote stack running locally so you can rapidly test and iterate on the changes you’ve made. Ironing out all of the bugs locally before you submit a pull request makes the review process much smoother. This was covered in the previous step.

Next thing you’ll want to do is bookmark the Antidote Object Reference. All curriculum resources, such as lessons, are defined “as-code”, meaning they are all defined using simple text files stored in Git. This documentation is vital for knowing what kind of things you can use to create an awesome lesson, so read that carefully, and follow the instructions there, whether you’re creating a new lesson, or modifying an existing one.

Finally, you’ll definitely want to download syrctl, the command-line tool that will serve as your best friend when contributing to the NRE Labs curriculum. With this tool, you can easily create a new lesson skeleton, or validate existing lesson content, so you don’t have to wonder if you’ve built a lesson correctly.

At this point, you’re ready to make the changes to your copy of the NRE Labs curriculum. Make commits, and push them to your fork as you see fit. Try to keep commit messages relevant and descriptive.

Get It Reviewed and Merged

Eventually, you’ll arrive at the point where the content you’re able to see in your local copy of Antidote looks like it’s ready for prime time. You’ve made all the changes you plan to make, and you’ve added them to your fork via pushed commits. At this point, you’re ready to open a pull request [https://github.com/nre-learning/nrelabs-curriculum/pull/new].

The link above will prompt you to specify your fork and branch you wish to “pull from” into the main NRE Labs curriculum. Select the appropriate fork and branch, and then fill out the description for the pull request. If you are opening this PR in response to an issue (whether you opened it or not) and you feel it addresses everything in that issue, you can say Closes <insert link to issue here> in your description, and when the PR is merged, the referenced issue(s) will be closed automatically.

At this point, the next step is for a reviewer to approve or make suggestions for a second round of edits for your content. Note that the goal for each and every review is not to nitpick or make it difficult to contribute to NRE Labs, but rather to ensure the content is reflected in the best light possible. Be patient and willing to adapt to feedback. It might be useful to take a peek at the curriculum review standards as that covers everything that a curriculum reviewer will be looking for.

If you are a maintainer or creator for an open source project in the infrastructure or automation space, the Antidote project would love to have you. We feel very strongly that if you’re maintaining an open source project, that you should have the right of first refusal for representing it in the NRE Labs curriculum. Please get in touch with us on the community forums [https://discuss.nrelabs.io] and we’ll make every effort to bring you up to speed with the environment so that you can show off your project on the site.

Curriculum Standards

ALL contributions to the NRE Labs curriculum must be done via a Pull Request, and Pull Requests can only be merged to master if the latest commit on that Pull Request’s branch satisfies all of these requirements:

	Passes all Github CI checks

	Has a valid “accepted” review from a curriculum committer that is different from the PR creator.

These are meant to be done in order. There is no point in conducting a review until all Github CI checks pass. However, once these are passing, the next step is for a reviewer to approve or make suggestions for a second round of edits for your content. Note that the goal for each and every review is not to nitpick or make it difficult to contribute to NRE Labs, but rather to ensure the content is reflected in the best light possible. Be patient and willing to adapt to feedback.

Here are a few things that reviewers should be on the lookout for when reviewing new contributions to the curriculum, either for new or existing lessons. If you’re contributing to the curriculum, you should be aware of these guidelines, to make the review process much smoother.

(Hopefully) Automated Checks

The following should be automatically checked via the CI tooling, but please double-check, and if the CI tooling missed any of the below, please open an issue on the curriculum repo.

	Is the CHANGELOG updated properly?

	Does syrctl validate pass?

Content Quality

Quality is important in NRE Labs. Here are some general things to be on the lookout for.

	Is the relevance to the learner clear from this lesson? How easy is it for people

to link this content with their day-to-day?

	Does each lesson stage hit the target length of 5-10 minutes?

	Are the lesson guides easy to follow? Are they well-written,

with appropriate chunking, punctuation/grammar, and visuals?

Technical

It’s also very important that the curriculum takes maximum advantage of the underlying Antidote platform.

	Does this follow the Lesson Image Requirements?

	Does the lesson appropriately take advantage of Antidote’s optional features for content depth, like

optional objective verification or diverse presentations? How about lesson diagrams or videos?

	Do the configuration mechanisms in place for the Endpoints properly reverse/forward based on stage?

NRE Labs Public Test Realm (PTR)

NOTE - the PTR is currently offline. We recently re-launched NRE Labs at a new domain, and haven’t yet rebuilt the PTR environment. Please bear with us as we figure out a good path forward.

To allow the community to see the latest changes in the curriculum, and help with testing them to ensure they’re solid before going into production, a “public test realm” (PTR) [https://ptr.go.nrelabs.io] is maintained separately from the production site. It can be thought of as a daily-updated release candidate for the NRE Labs curriculum.

PTR is not meant to be used to test Antidote platform features. Both the production and PTR sites will be running the latest stable release of the Antidote platform for which a stable version of the curriculum has been released. The idea of PTR is to provide a sort of rolling release candidate for the curriculum itself.

The PTR is redeployed nightly from the latest master of the NRE Labs curriculum. This means that content that’s gone through the proper approval process should show up automatically within 24 hours.

As a result, PTR is inherently not guaranteed to be stable, and content in PTR should not be thought of as “perfect”. PTR is merely a representation of the current master branch of the curriculum - and because of that , it’s gone through at least one level of review. However, the presence of content in PTR is not an indication that the content is ready for production - that will have to wait for the release cycle to end.

The flow of content from contribution to PTR is outlined below:

[image: ../../_images/ptr_process1.png]

As outlined in the previous sections, the curriculum is built to target a particular stable version of the Antidote platform. Since the PTR is primarily used as a function of the curriculum, when a new curriculum release cycle kicks off, and a platform version is identified, this version will be deployed to the PTR.

All curriculum content contains a tier field, which can be set to ptr in order to ensure that the content only shows on the PTR. If content is deemed to be ready for production, it will be “promoted” by setting this field to prod. Note that content with a prod tier must still be captured into a stable release to actually make it to the production site.

What is NRE Labs?

NRE Labs [https://labs.networkreliability.engineering] is an open-source project and website for teaching network automation using real virtual environments that are provisioned on-demand and presented interactively in your web browser.

It’s powered by the Antidote [https://github.com/nre-learning/antidote] platform, which provides an abstraction to enable curriculum-as-code, meaning all learning materials can be represented as simple text files, stored in a Git repository.

[image: ../_images/antidote_hla.png]TODO: Replace with a better one

To power the site, we put all these pieces together to give users the opportunity to learn the subjects within the NRE Labs curriculum without having to set anything up on their own.

The documentation you’re reading focuses on just one aspect to this stack, and that is the NRE Labs curriculum itself. These are the set of files that represent lesson content, collections, images and more that are shown in the website. We treat the NRE Labs curriculum as its own entity, with its own release cycle, versioning, contribution model, and documentation.

description: >-
If you’re not a developer, but you want to find other ways to contribute, have
no fear! We’ve got you covered.

Help! I’m Not A Developer!

For the NRE Labs project as a whole, putting everything in Git is central to the spirit of the project. “Curriculum as Code” is part of what makes NRE Labs tick - instead of storing the curriculum behind closed doors, it’s published for all to not only see, but also contribute to.

We’ve taken this idea and extended it to all aspects of the project, not just the curriculum, or the technical bits of the Antidote platform. Everything we do is represented in a GitHub repository somewhere under the nre-learning org. For example:

	The NRE Labs Website and Blog [https://nrelabs.io] is powered by a static site generator called Hugo, which takes simple Markdown [https://daringfireball.net/projects/markdown/syntax] files located in our nre-blog repo [https://github.com/nre-learning/nre-blog] and renders them automatically into static HTML pages. This makes the blog much easier to manage, while also allowing folks to contribute without having to be web developers.

	All of the documentation you’re reading here is sourced from a GitHub repository as well [https://github.com/nre-learning/nrelabs-docs], and rendered into this nice view by a service called GitBook. It is also written in Markdown. If you want to contribute to these docs, you can either open a pull request to this repository, or get in touch with us, and we may be able to work something else out.

	Our governance and technical planning docs are written in Markdown and added as Pull Requests to the proposals repository [https://github.com/nre-learning/proposals]. Not only does this allow anyone to easily contribute to these, but this public model means all can participate in their formation. Pull Requests here are open to all to review at any time.

The end result of this is a model that is public and open to all by default. No matter what you’re talking about, whether core platform software, or blogs on the latest developments in the world of DevOps and NRE, it’s all done on GitHub.

That said - it might be easy to assume that you have to have a developer skill-set in order to work with GitHub. Not so! You just need some tools and a little knowledge about plaintext formatting languages, which are outlined below.

What You Need

First, you need to install two things on your computer:

	A decent text editor. I recommend VSCode [https://code.visualstudio.com/download] - it’s free, simple enough while still being robust, and includes support for the things we will want to use it for.

	The Github client [https://desktop.github.com/]. This is also cross-platform, and gives you the benefits of Github without having to do anything on the command-line.

Next, as all of the above projects use Markdown as a simple plaintext formatting language, you really should spend some time understanding it [https://guides.github.com/features/mastering-markdown/].

Finally, the guide on NRE Labs Git repositories will cover how we use Git and GitHub, and will contain links to other learning resources if you’re new to Git.

(Legacy) Local Preview

Self-Medicate is a collection of scripts that allow you to run the software stack that powers the NRE Labs stack on your laptop. Historically, this was the only possibile way to preview any curriculum contributions.

However, with the introduction of the NRE Labs Preview Service, this is no longer formally supported as a primary function for this tool. We will continue to maintain and provide self-medicate as a generally useful reference deployment, and you are welcome to continue to use self-medicate if you wish, but you will likely not receive a lot of support, so you are on your own. For the vast majority of curriculum contributions, please use the Preview Service as part of the normal contribution process.

If you’ve made changes to the NRE Labs curriculum and are looking to contribute them, you’ll probably want to find a way to run them locally yourself before opening a pull request. The selfmedicate [https://github.com/nre-learning/antidote-selfmedicate] tool is a way to get a local version of NRE Labs running on your own machine. This allows you to see how your lesson actually performs, before you open a Pull Request.

Preparing the Environment

In the last section, you cloned your fork of the NRE Labs curriculum to your own machine. If this is still the working directory in your shell, navigate to the parent directory like so:

cd ../

The important thing at this point is that your shell should currently be located at the parent directory of the NRE Labs curriculum. Next, clone and enter the selfmedicate repository:

git clone https://github.com/nre-learning/antidote-selfmedicate
cd antidote-selfmedicate/

{% hint style=”info” %}
Please remember that changes are being made to selfmedicate all the time. If you encounter issues, the very first thing you should try before you open an issue is to make sure you have the latest copy of this repository by doing a git pull on the master branch.
{% endhint %}

For maximum compatibility across operating systems, we deploy selfmedicate in a Vagrant environment, so that it can run in a consistent, properly configured virtual machine with all of the dependencies needed. As a result, you’ll need a hypervisor. Selfmedicate officially supports Virtualbox [https://www.virtualbox.org/wiki/Downloads] as it is widely supported across operating systems as well as the automation we’ll use to get everything spun up on top of it.

Next, you’ll need Vagrant [https://www.vagrantup.com/docs/installation/]. Vagrant allows us to define a virtual environment in the selfmedicate repository that automatically contains all of the software dependencies needed to make Antidote work.

{% hint style=”info” %}
The Self-Medicate Vagrantfile starts a VM with 4GB of RAM and 2 vCPUs by default. While this is not a strict requirement, it’s a reasonable default. You’re free to edit this if you know what you’re doing.
{% endhint %}

There are some required Vagrant plugins as well (you only need to run these once).

vagrant plugin install vagrant-vbguest
vagrant plugin install vagrant-hostsupdater

To start the Vagrant environment for selfmedicate, run:

vagrant up

Once this is done, the environment should be ready to access at the URL shown by the script.

The Selfmedicate Script

In the last section, we started a Vagrant machine with all of the prerequisites installed for running the Antidote platform. In this section, we’ll dive a little bit into the selfmedicate tool specifically, so you are able to use it to iterate on lesson content and quickly preview the changes you’ve made.

These instructions assume you’ve followed the previous section, and now have a running Vagrant machine. If not, please do that now before continuing.

Open an SSH connection to the Vagrant machine:

vagrant ssh

The rest of the selfmedicate instructions will take place within this environment.

The selfmedicate.sh script is our one-stop shop for managing the development environment. This script has several subcommands:

./selfmedicate.sh -h
Usage: selfmedicate.sh <subcommand> [options]
Subcommands:
 start Start local instance of Antidote
 reload Reload Antidote components
 stop Stop local instance of Antidote
 resume Resume stopped Antidote instance

options:
-h, --help show brief help

In rare circumstances, you might need to run the start, stop, or resume commands. However, these commands have been wired up to the Vagrant environment in such a way that this shouldn’t be necessary.

The main command you’ll probably want to run within the Vagrant environment is the reload subcommand. This allows Antidote to re-import curriculum content:

./selfmedicate reload

Troubleshooting Self-Medicate

The vast majority of all setup activities are performed by the selfmedicate script. The idea is that this script shoulders the burden of downloading all the appropriate software and building is so that you can quickly get to focusing on lesson content. However, issues can still happen. This section is meant to direct you towards the right next steps should something go wrong and you need to intervene directly.

The selfmedicate script is designed to make it easy to configure a local minikube environment with everything related to Antidote installed on top. However, you’ll always be well-served by becoming familiar with minikube or even Kubernetes itself so that you are more able to troubleshoot the environment when things go wrong.

Before asking for help, please first answer these questions:

	Have you read this page in its entirety?

	Have you run a git pull on the latest master branch of the Self-Medicate and Curriculum repos?

	Have you looked at the Common Selfmedicate Issues?

If you answered “yes” to all of these questions, please open an issue on the selfmedicate repository [https://github.com/nre-learning/antidote-selfmedicate/issues/new] and ensure you follow the instructions provided there.

The self-medicate tool comes with a debug subcommand which runs a series of commands for extracting information that will be needed for any troubleshooting activity. To run this subcommand and place all output in a file called selfmedicatedebug.txt, run the below:

./selfmedicate.sh debug > selfmedicatedebug.txt

When opening an issue on the Self-Medicate repository linked above, this information will be required to move forward with troubleshooting any issues, so please create a new Github Gist [https://gist.github.com/] and paste the link into the relevant spot in your issue. Please do not paste the debug contents into a Github Issue directly.

Common Self-Medicate Issues

All of the steps below assume a working Vagrant environment, and a working persistent connection to this virtual machine via vagrant ssh.

Cannot Connect to the Web Front-End

It’s likely that the pods for running the Antidote platform aren’t running yet. Try getting the current pods:

~$ kubectl get pods
NAME READY STATUS RESTARTS AGE
antidote-web-99c6b9d8d-pj55w 2/2 Running 0 12d
nginx-ingress-controller-694479667b-v64sm 1/1 Running 0 12d
syringe-fbc65bdf5-zf4l4 1/1 Running 4 12d

You should see something similar to the above. The exact pod names will be different, but you should see the same numbers under the READY column, and all entries under the STATUS column should read Running as above.

In some cases the STATUS column may read ContainerCreating. In this case, it’s likely that the images for each pod is still being downloaded to your machine. You can verify this by “describing” the pod that’s not Ready yet:

kubectl describe pods -n=kube-system kube-multus-ds-amd64-ddxqc
Name: kube-multus-ds-amd64-ddxqc
....truncated....
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 19s default-scheduler Successfully assigned kube-system/kube-multus-ds-amd64-ddxqc to minikube
Normal Pulling 17s kubelet, minikube pulling image "nfvpe/multus:latest"

In this example, we’re still waiting for the image to download - the most recent event indicates that the image is being pulled. The selfmedicate.sh script has some built-in logic to wait for these downloads to finish before moving to the next step, but in case that doesn’t work, this can help you understand what’s going on behind the scenes.

If you’re seeing something else, it’s likely that something is truly broken, and you likely won’t be able to get the environment working without some kind of intervention. Please open an issue on the antidote-selfmedicate repository [https://github.com/nre-learning/antidote-selfmedicate/issues/new] with a full description of what you’re seeing.

Lesson Times Out While Loading

Let’s say you’ve managed to get into the web front-end, and you’re able to navigate to a lesson, but the lesson just hangs forever at the loading screen. Eventually you’ll see some kind of error message that indicates the lesson timed out while trying to start.

This can have a number of causes, but one of the most common is that the images used in a lesson failed to download within the configured timeout window. This isn’t totally uncommon, since the images tend to be fairly large, and on some internet connections, this can take some time.

There are a few things you can try. For instance, kubectl describe pods <pod name>, as used in the previous section, can tell you if a given pod is still downloading an image.

We can also use docker commands to check the list of docker images that have been successfully pulled:

docker image list

Tools for Presenters

We maintain a page on the NRE Labs site called “NRE Labs in the Wild [https://nrelabs.io/community/nre-labs-in-the-wild/]”. We try to keep this updated with any presentations with public recordings that are either about or include NRE Labs.

[image: ../_images/screenshot-from-2020-06-12-15-03-17.png]

If you’d like to give your own presentation on NRE Labs, both PDF and ODP formats are available here [https://github.com/nre-learning/nre-resources/tree/master/presentations]. Download these and modify as you need for your own NRE Labs presentations. This repository also houses other resources like hi-res logos that you might find useful.

The following video was recorded as an example for this presentation. You can use it as inspiration for your own presentation to whatever degree you wish:

{% embed url=”https://www.youtube.com/watch?v=i4zvlLyHYFg” %}

Creating Endpoint Images

Images should be handled separately from lessons.

In general, new curriculum content like lessons should take advantage of the Endpoint images that already exist. Images are not meant to be used once, for one lesson - they are meant to be standalone resources that could be used in multiple lessons as the need arises.

However sometimes the creation of new images is warranted, and this doc describes the process for doing this.

1) it should be handled separate from and in advance of any lessons that may wish to use it (i.e. open a PR to contribute the image first)

2) This doc will also describe the process for creating images with commercial software content that you don’t wish to be publicly available outside of NRE Labs

Curriculum Quality Standards

NRE Labs is a learning platform. While there are certainly tools in the platform for creating compelling, interactive experiences, the goal of NRE Labs is not merely to demonstrate a piece of technology. These tools are supporting elements for the greater mission to educate and edify the learner and the infrastructure community as a whole.

This document is meant to provide guidance so that any contributed content can be well-aligned towards this mission. As you consider contributing to the curriculum, please approach it with a teacher’s mindset. Always be asking yourself: “How can I meaningfully and tangibly improve the day-to-day experiences of the learner?” If you can learn to think this way, you’ll find you’ll be much better aligned with the spirit of the project.

Please read this document and its guidance thoughtfully. Doing so will make the review and ultimately, the acceptance of your contribution much smoother.

NRE Labs’ Guiding Principles

The Learner Must LEARN Something

You’ll notice that we rarely (if ever) use the term “users”, but rather “learners” when referring to people who consume the content on NRE Labs. This is intentional; it helps us to keep our eyes on the mission of education, rather than pushing a certain tech stack or product feature.

From the beginning of the project, the goal of NRE Labs has been to tangibly improve the day-to-day lives of infrastructure professionals. The past few decades have been plagued with talk of people losing their jobs due to automation, and infrastructure professionals being “replaced by programmers”. This project took a different approach, of not talking down to, but rather empowering these professionals with the skills they need to not only keep pace with the changing technology landscape, but to get ahead. There is no other goal that is more central to the NRE Labs project. It is our “Raison d’être [https://www.merriam-webster.com/dictionary/raison%20d%27%C3%AAtre]”.

The NRE Labs project is so much more than a collection of docker images that we let people play with in a web-based environment. This is certainly a great feature of the platform, but these are meaningless without compelling, well thought-out content that allows the learner to come away from this experience with real skills they can apply immediately.

These skills must also be reasonably portable. While it’s totally acceptable to use a specific tool or technology to illustrate a concept, lessons that focus too deeply on the specific features/functionality of a given tool or product (to the point where the learner must use that exact same tool or product to get any value out of that content) are not appropriate for NRE Labs. Instead, lessons must focus on the concepts and principles, using specific tools or products as an illustration of an example of how those concepts can be achieved, leaving room for others.

So in short:

	The Learner Must Acquire Tangible Skills From the Content - It’s not enough to have them run some commands - how can they take the underlying core principles behind the content and use them to improve their day-to-day?

	Learned Skills Should be Portable - Where at all possible, these skills must be widely applicable beyond a specific technology or stack. Can the learner take these skills and reasonably apply them in their own environment?

The Learner Must DO Something

Complex subjects like automation can be especially hard to learn by simply reading a blog post. At some point you have to get practical experience before anything “sticks”. So much of what modern infrastructure professionals are expected to know these days are acquired not only through textbooks or video courses, but by years of practical experience.

One of the biggest ways NRE Labs helps the learner adopt new skills is by giving them an opportunity to actually interact with relevant technologies in a very hands-on way. If our goal is to truly edify the learner, this “learning by doing” is how we make this possible.

However, this interactivity is a balancing act. What we aim for is to provide the simplicity of a blog post, with the interactivity of a home lab. When writing your content, try to keep this aim in mind. Content should provide a compelling lesson guide, with illustrative images and videos where possible, to help the learner understand what they’re expected to accomplish in your lesson. This should be joined with tools like Endpoint Images and Presentations to bring this content to life with real, interactive experiences. Break your content up into Stages, and build on concepts learned in previous stages to accomplish the broader purpose for your Lesson. Aim to give the learner a sense that they’ve really accomplished something, and that the time they spend in the NRE Labs curriculum will give them a tangible return on their investment.

It’s also important that when you build interactive examples that you ensure this interactivity is at an appropriate level. If for instance, you build a lesson that shows a script that you built to solve a certain problem, perhaps it would be useful to first spend a few stages walking through the script, maybe having the learner run the commands in the script line-by-line. Don’t just build a lesson for the purpose of having the learner run a few scripts: break those scripts down into the basic concepts and principles, so that the learner can learn from your thought process, and then write their own scripts.

Finally, there are some things you may want to do in the lesson environment that are not strictly relevant to the concept you want to teach. Maybe you need to run a script to prepare the environment at runtime so the learner can experience a specific workflow or aspect of a tool or technology stack. In this case, consider using Endpoint Images and Endpoint Configurations to prep the lesson environment behind the scenes, so that when a learner loads a lesson, they’re given an environment that has already been prepared for them. It’s important that the interactive steps that we give to the learner remain focused on the task at hand - anything outside of that scope can and should be automated by the NRE Labs platform using these tools.

So, to summarize:

	Lessons Must be Appropriately Interactive - Balance good content with useful interactivity.

	Give the Learner Superpowers - Don’t just show the end result, teach the learner how to get there themselves.

	Focus On the Task at Hand - If a task needs to be done, but isn’t core to the concepts you’re trying to teach, try baking it into the Endpoint Image or run via Endpoint Configurations to keep learner’s focus where it needs to be.

Contribution Process

Generally we try to keep process to a minimum. However, to ensure quality remains high, there are a few things that any contribution must adhere to.

ALL contributions to the NRE Labs curriculum must be done via a Pull Request, and Pull Requests can only be merged to master if the latest commit on that Pull Request’s branch satisfies all of these requirements:

	Passes all GitHub CI checks

	Has a valid “accepted” review from a curriculum maintainer.

Note that the goal for each and every review is not to nitpick or make it difficult to contribute to NRE Labs, but rather to ensure the content is reflected in the best light possible. Be patient and willing to adapt to feedback.

Content Outline

From time to time, a reviewer may ask you for an outline of your planned content. This is an easy way for you to communicate the “big picture” for your content so that everyone can get on the same page with what your lesson is trying to teach.

For this purpose, you can think of an outline in the same way that someone would write a “table of contents” for a book. This can simply be a bulleted list where each entry is a lesson stage you plan to create. In each bullet, briefly name and describe each stage and what you expect the learner to get out of it.

While there is no strict requirement for providing an outline ahead of time, you’re encouraged to provide one as early as possible, to ensure that if there are any problems, they can be addressed early. For simple contributions, you may choose to provide this your contribution’s Pull Request. For complex content, or especially if your content requires new Endpoint Images, a separate Issue ahead of time would be immensely helpful.

Well thought-out outlines should answer the following questions:

	How will this content be chunked, if appropriate, into separate stages? Put each stage in its own bullet point.

	In each stage, what will the learner actually do interactively, and what skills will they expect to pick up along the way, that they can apply to their day job?

	Is the relevance to the learner clear from this lesson? How easy is it for people to link this content with their day-to-day?

	Does each lesson stage hit the target length of 5-10 minutes?

General Quality and Technical Tips

Here are some helpful tips on general quality or various technical aspects of building NRE Labs content. Don’t stress out too much about these; do your best, and we’ll help you work things out during the review process.

	Are the lesson guides easy to follow? Are they well-written, with appropriate chunking, punctuation/grammar, and visuals?

	If you’re creating or modifying images, have you read the guide on NRE Labs Endpoint Images?

	Does the lesson appropriately take advantage of Antidote’s features, such as lesson guide types, diverse presentations, lesson diagrams or videos?

	Ensure that any configurations you use treat each stage atomically. Don’t assume that the learner will view each stage in order.

Curriculum Release Process

The NRE Labs curriculum is managed like any software project, with regular, planned release cycles. The lifecycle of a curriculum release is performed in four discrete steps.

Step 1 - Release Kickoff

A post will be created in the Project Management [https://discuss.nrelabs.io/c/project-management/10] forum topic to notify everyone that the work on this release has begun, with the title “Release Kickoff…”. This forum thread should serve as the center of all release planning discussions, and all are welcome to participate. If you have something you think should be included in or excluded from the release plan, speak up there.

In this first kickoff, we’ll begin gathering ideas for things we want to get done in this release. These will be retrieved from various sources:

	Open issues or PRs in the curriculum repo - comb and triage; Which are ready to be worked on, or are most imminent?

	Ideas from the community not yet documented formally

	Tasks needed for updating the curriculum to be compatible with a new platform version (if applicable)

	Any tasks that need to be done to bring the existing curriculum in line with the targeted Antidote platform version

While the kickoff is meant to get a starter list together, it’s likely that more ideas will come up at any time in the release cycle. This is normal, and expected. However, the first week of a release cycle should strive to ensure the really important things are well-documented and if possible, assigned.

Another very important task for this initial meeting is to decide which Antidote platform this curriculum release will target. Once this is determined, the preview service will be updated to use this version to ensure compatibility.

A project plan for the release that represents the work discussed in the previous week will be posted to the projects list [https://github.com/nre-learning/nrelabs-curriculum/projects] and presented to attendees. This is a kanban-board style project planning tool that allows all to easily see the state of work for a given release.

Finally, a post will be created in the Project Management [https://discuss.nrelabs.io/c/project-management/10] forum topic to notify everyone that the work on this release has begun, with the title “Release Kickoff…”. This forum thread should serve as the center of all release planning discussions, and all are welcome to participate. If you have something you think should be included in or excluded from the release plan, speak up there.

Not all work fits neatly into a release plan, and that’s okay. Especially in the curriculum, contributions of any kind can reasonably take place at any time. The purpose of a release plan isn’t to put limits on the work that can be done for a release, but rather to ensure that the important things that really need to get done are accounted for. If you want to work on something that’s not explicitly asked for in the release plan, that’s totally fine.

Step 2 - Development Work

Once a release cycle is kicked off, the only thing left to do is….do the work! At this point, a relatively complete list of things to do for this release should be captured in a Github project, which will be linked to in the community forum kickoff post. Contributors can use this as a guide, or do other work they think is useful.

The curriculum contribution guide should be consulted repeatedly to ensure you’re on the right track with respect to curriculum contributions. All of those guidelines apply here. It’s important for contributions to follow this lifecycle, so that release managers can properly coordinate work across the project.

Step 3 - Testing Phase

At some point, the list of tasks that are meant to be tackled for a given release are complete, and it’s time to initiate the process of cutting a release, and getting it into production.

The first step in this process is to ensure the latest changes in the master branch of the curriculum are properly represented in the PTR. This should automatically happen nightly, but someone from the NRE Labs Ops team will make sure this is true.

A forum topic will be posted to Curriculum Project Management [https://discuss.nrelabs.io/c/curriculum-project-management]_ with the title “Testing Curriculum Release vX.X.X”. This will contain a link to the testing procedure, and a summary of the CHANGELOG at that point in time, so that new content can be tested properly. For a minimum of seven days from the date of the post, contributors should test the site as it exists in PTR, and submit feedback.

The best way to provide feedback is via a response to that original forum topic, or a Github issue in the curriculum repository.

Instead of submitting feedback, you may feel like you can just fix it yourself in a Pull Request. This is always welcome and appreciated, and is often the easiest way to make your first contribution to the curriculum. So, don’t be shy! See the curriculum contribution guide for more info on how to do this.

The curriculum maintainers will stay on top of feedback and strive to ensure that all problems are either fixed via a Pull Request, or documented via an Issue for a future release. The Testing Phase will not end until the maintainers are comfortable that the latest master, as represented via the PTR site represents a healthy curriculum.

Step 4 - Release and Deployment

Once the testing phase has completed, the NRE Labs Ops team will execute a workflow that creates the target version release for the curriculum, and will deploy this version to production.

In addition, if this curriculum release is meant to target a new version of the Antidote platform, the production site should also be updated accordingly.

In the following week (or at most two), the cycle will repeat, and a new release kickoff will take place.

Appendix - Platform Targeting

The NRE Labs curriculum is released separately from the underlying Antidote platform. As a result, the platform’s release cycle will charge ahead with new features, and it’s up to the curriculum release planning to “target” a stable version of the platform to develop against. The below image shows an example of how this might work:

[image: ../_images/curriculum_target1.png]

At the time the curriculum started on its own release cycle, v0.4.0 of the platform was released simultaneously with v1.0.0 of the NRE Labs curriculum. In the future, the curriculum may want to release a new version before v0.5.0 of the platform is ready. In this case, the curriculum, starting with v1.1.0 will continue to target v0.4.0 until a suitable stable platform release is ready.

description: >-
If you’re not a developer, but you want to find other ways to contribute, have
no fear! We’ve got you covered.

Help! I’m Not A Developer!

For the NRE Labs project as a whole, putting everything in Git is central to the spirit of the project. “Curriculum as Code” is part of what makes NRE Labs tick - instead of storing the curriculum behind closed doors, it’s published for all to not only see, but also contribute to.

We’ve taken this idea and extended it to all aspects of the project, not just the curriculum, or the technical bits of the Antidote platform. Everything we do is represented in a GitHub repository somewhere under the nre-learning org. For example:

	The NRE Labs Website and Blog [https://nrelabs.io] is powered by a static site generator called Hugo, which takes simple Markdown [https://daringfireball.net/projects/markdown/syntax] files located in our nre-blog repo [https://github.com/nre-learning/nre-blog] and renders them automatically into static HTML pages. This makes the blog much easier to manage, while also allowing folks to contribute without having to be web developers.

	All of the documentation you’re reading here is sourced from a GitHub repository as well [https://github.com/nre-learning/nrelabs-docs], and rendered into this nice view by a service called GitBook. It is also written in Markdown. If you want to contribute to these docs, you can either open a pull request to this repository, or get in touch with us, and we may be able to work something else out.

	Our governance and technical planning docs are written in Markdown and added as Pull Requests to the proposals repository [https://github.com/nre-learning/proposals]. Not only does this allow anyone to easily contribute to these, but this public model means all can participate in their formation. Pull Requests here are open to all to review at any time.

The end result of this is a model that is public and open to all by default. No matter what you’re talking about, whether core platform software, or blogs on the latest developments in the world of DevOps and NRE, it’s all done on GitHub.

That said - it might be easy to assume that you have to have a developer skill-set in order to work with GitHub. Not so! You just need some tools and a little knowledge about plaintext formatting languages, which are outlined below.

What You Need

First, you need to install two things on your computer:

	A decent text editor. I recommend VSCode [https://code.visualstudio.com/download] - it’s free, simple enough while still being robust, and includes support for the things we will want to use it for.

	The Github client [https://desktop.github.com/]. This is also cross-platform, and gives you the benefits of Github without having to do anything on the command-line.

Next, as all of the above projects use Markdown as a simple plaintext formatting language, you really should spend some time understanding it [https://guides.github.com/features/mastering-markdown/].

Finally, the guide on NRE Labs Git repositories will cover how we use Git and GitHub, and will contain links to other learning resources if you’re new to Git.

NRE Labs Endpoint Images

The primary purpose of NRE Labs is to provide education on modern network engineering and automation principles. So, while this purpose is often accomplished by including specific tools, software, or other technologies, let us not lose sight of this over-arching mission.

That said, one of the biggest benefits of the NRE Labs platform is to use real software in real environments, spun up on demand, to provide compelling interactive experiences in which this learning can take place. In NRE Labs, we accomplish this through Endpoint Images. These are pre-built docker images that we reference from Lesson definitions to power the learner experience.

If you’re looking for technical details on how Endpoint images work, and how to create or add them to the curriculum, please head on over to the Images object reference. The remainder of this document will instead help you understand the higher-level process for dealing with Images within the NRE Labs curriculum, and answer some frequently-asked questions.

Do You Need a New Image?

NRE Labs curriculum images are where all the complexity lies. To make things easy for the learner, we have to take on a lot of the complexity that would normally be on their plate, and instead do it ourselves using prebuilt Docker images, and other tools like endpoint configuration. As a content author, you should be aware that if you choose to go this direction, you need to be willing and able to shoulder this complexity.

In general, new curriculum content like Lessons should take advantage of the Endpoint images that already exist. Images are not meant to be used once, for one lesson - they are meant to be standalone resources that could be used in multiple lessons as the need arises.

There are a few options you should consider before you decide to create a new image. They are, in order:

	There are a number of existing images that are designed to be very multi-purpose. For instance, the utility image comes with Python and a bunch of automation-related libraries pre-installed.

	If you just want to share some basic files or scripts into the lesson environment, consider using an existing image like utility, and using NRE Labs’ built-in directory mapping to make those files available.

	Maybe there’s an existing image that’s just missing a dependency. Consider augmenting an existing image, by simply adding a step to that image’s Dockerfile, or maybe a requirements.txt file if applicable.

	If none of these options work for you, read the Images reference for the technical details on how to create an image. You can contribute a new image on its own, or as part of a content contribution that uses this new image.

Currently the best place to see details on existing images is to look at the NRE Labs curriculum repository manually. In the future, we’ll have some better tooling around this.

Commercial Software

NRE Labs is aimed at educating about modern infrastructure engineering processes. While open source software has had a dramatic impact on this space over the last decade (which is well-represented by the presence of open-source in the NRE Labs curriculum) it’s not possible for the NRE Labs project to only include open source software. Most infrastructure professionals are not able to avoid commercial software entirely, and neither can this curriculum.

All commercial software in the curriculum will continue to adhere to the Curriculum Quality Standards. Whether open source or commercial, the technology is never the sole focus of the content - it is the skill-sets that a learner can acquire. While we’ll continue to have a healthy mix of open and closed software, no matter what, the focus will be on the content and improving the skills of the infrastructure professional.

All contributions that adhere to the spirit of the project are welcome. We already have network operating systems from Juniper, and Cumulus Networks (with more on the way), and software from Red Hat Ansible. This is in addition to the myriad of open source tools and projects that are heavily featured in our curriculum.

Commercial software that has been contributed doesn’t have to be publicly downloadable. We have mechanisms in place that allow us to control where the commercial software is distributed, giving the learner access to the software only through the NRE Labs portal. Reach out to us via the community forums [https://discuss.nrelabs.io/c/general-discussion/6] or via email for more details on this.

Git Tips

The Antidote project does everything in the open. All configurations, curriculum resources, and source code can be found in one of the GitHub repositories in the nre-learning [https://github.com/nre-learning] organization. As a result, no matter where you want to contribute to the Antidote project, you’re likely able to do so by contributing to one of these repositories.

However, not everyone that wants to contribute knows how Git works, and even for those that do, the way the Antidote project uses Git to accept contributions may not exactly match with previous experience. This document is aimed at covering everything you’ll need to know to contribute to any Antidote repository. Other pages within this documentation explain the specifics of contributing to the curriculum, the underlying platform, the development environment, or even the documentation itself, but they all have one common theme - at some point, in order to contribute, you will need to work with Git or Github.

So, those pages will focus on the specific details and repositories they cover, but will inevitably link here. So, this document will apply to any Git repository those pages might reference, even though we’ll use some specific examples here for illustrative purposes.

This is not meant to be a tutorial on Git or Github. While you certainly don’t need to be a Git expert to work with Antidote repositories (especially if you’re only interacting with Github), you will always be well-served to get some basics under your belt. This basic introduction [https://git-scm.com/book/en/v1/Git-Basics] __is highly recommended reading, and we will be making some references to the terms contained within. In addition, if you don’t have a Github account, sign up for one here [https://github.com/join]. There’s really no getting around it, if you wish to interact with the Antidote project in nearly any capacity.

The nrelabs-curriculum [http://github.com/nre-learning/nrelabs-curriculum] __repository is probably one of the most popular repositories in the Antidote project. While not technically part of the Antidote platform, it is the flagship curriculum developed for the platform, and is what powers the NRE Labs [https://nrelabs.io] site. For the vast majority of examples, we’ll be using this repository to illustrate the concepts, but for the most part, everything applies to any Antidote repository.

“Watching” for Activity Notifications

One of the easiest ways to start getting involved with the Antidote project is to just pay close attention to what’s going on. In addition to making sure you’re aware of new threads on the community site [https://discuss.nrelabs.io/](which you should totally do), a leading way to do this is to “Watch” the Antidote repositories relevant to you. You can do this by navigating to one of the repositories, and clicking the “Watch” drop-down at the top right of the page:

[image: ../_images/watch.png]

Make sure you also take a look at your notification settings [https://github.com/settings/notifications] to ensure that not only are you notified for new issues and Pull Requests, but also that the email address is one that you check often. Notifications at this level are always relevant and technical, and represent the true nature of discussion going on with the project. So if you’re willing to turn notifications on for anything, this is the time to do it.

How and When to Open an Issue

The community forums [https://discuss.nrelabs.io/] are the best place to go for general discussions and support with developing lessons, or even working with code on the Antidote platform. However, sometimes it’s necessary to make more of a definitive statement, such as “I think I’m encountering a bug, here’s what I’m seeing”, or “I really with Antidote did X”. In these cases, where such a statement may not have an immediate answer but clearly represents some level of work to satisfy, a GitHub Issue is often the best place to post that.

Issues aren’t restricted only to folks to have pushed code or other content to a repository. If you have constructive feedback, that is just as valuable a contribution, and opening a new Issue is a great way to do that. Examples include:

	Bug reports (even if you’re not quite sure it’s a bug)

	Feature requests

	Help with an error

Every repository has an “Issues” tab that you can click to take you to the currently open Issues for that repository:

[image: ../_images/issuetab.png]

There’s a big green button at the top left of that page (once you click the Issues tab) that said “New Issue”. Clicking that will take you to a form where you can provide a title and description. For some Antidote repositories, these fields will be pre-populated with a framework of the kind of information that would be very helpful to anyone that looks into things for you. In general, follow the guidance that’s there, but post as much detail as you can, and be ready to provide more if asked.

Using Labels to Identify Work Complexity

If you have poked around at the open issues, you may notice that some of them have colorful tags attached to them. GitHub calls these “labels”, and they are useful for providing additional categorization for issues or pull requests.

Lots of folks approach open source projects with some enthusiasm and willingness to get involved, but often don’t know where to start. It’s pretty difficult to look at a list of bug reports and have any idea how far the rabbit hole goes for any of them. The best way to get started with a project is to take on a task that gets you that experience without requiring you to spin your wheels for weeks, which is super demotivating.

For you, we’ve created complexity ratings in the form of GitHub Issue labels, and try our best to apply them to each issue on the Antidote repositories:

[image: ../_images/complexitylabels.png]

These are things like enhancements or bug-fixes that we’ve set aside that are relatively approachable, and don’t require you to know how everything works in order to satisfy them. What this means for you, is you can easily get a look at a repositories low-hanging fruit tasks by filtering issues by the complexity: low label. For the nrelabs-curriculum repository, this URL gets you straight there [https://github.com/nre-learning/nrelabs-curriculum/labels/complexity%3A%20low].

However, nearly all Antidote repositories have the same taxonomy, so no matter where your interests lie, this mechanism is in place for you to identify those “entrance ramp” tasks. If you lean more towards web or front-end development, the complexity: low tag in antidote-web [https://github.com/nre-learning/antidote-web/labels/complexity%3A%20low] __may interest you. If you like to work on back-end systems, or with languages like Python or Go, the same tag in antidote-core [https://github.com/nre-learning/antidote-web/labels/complexity%3A%20low]may interest you.

(Legacy) Local Preview

Self-Medicate is a collection of scripts that allow you to run the software stack that powers the NRE Labs stack on your laptop. Historically, this was the only possibile way to preview any curriculum contributions.

However, with the introduction of the NRE Labs Preview Service, this is no longer formally supported as a primary function for this tool. We will continue to maintain and provide self-medicate as a generally useful reference deployment, and you are welcome to continue to use self-medicate if you wish, but you will likely not receive a lot of support, so you are on your own. For the vast majority of curriculum contributions, please use the Preview Service as part of the normal contribution process.

If you’ve made changes to the NRE Labs curriculum and are looking to contribute them, you’ll probably want to find a way to run them locally yourself before opening a pull request. The selfmedicate [https://github.com/nre-learning/antidote-selfmedicate] tool is a way to get a local version of NRE Labs running on your own machine. This allows you to see how your lesson actually performs, before you open a Pull Request.

Preparing the Environment

In the last section, you cloned your fork of the NRE Labs curriculum to your own machine. If this is still the working directory in your shell, navigate to the parent directory like so:

cd ../

The important thing at this point is that your shell should currently be located at the parent directory of the NRE Labs curriculum. Next, clone and enter the selfmedicate repository:

git clone https://github.com/nre-learning/antidote-selfmedicate
cd antidote-selfmedicate/

{% hint style=”info” %}
Please remember that changes are being made to selfmedicate all the time. If you encounter issues, the very first thing you should try before you open an issue is to make sure you have the latest copy of this repository by doing a git pull on the master branch.
{% endhint %}

For maximum compatibility across operating systems, we deploy selfmedicate in a Vagrant environment, so that it can run in a consistent, properly configured virtual machine with all of the dependencies needed. As a result, you’ll need a hypervisor. Selfmedicate officially supports Virtualbox [https://www.virtualbox.org/wiki/Downloads] as it is widely supported across operating systems as well as the automation we’ll use to get everything spun up on top of it.

Next, you’ll need Vagrant [https://www.vagrantup.com/docs/installation/]. Vagrant allows us to define a virtual environment in the selfmedicate repository that automatically contains all of the software dependencies needed to make Antidote work.

{% hint style=”info” %}
The Self-Medicate Vagrantfile starts a VM with 4GB of RAM and 2 vCPUs by default. While this is not a strict requirement, it’s a reasonable default. You’re free to edit this if you know what you’re doing.
{% endhint %}

There are some required Vagrant plugins as well (you only need to run these once).

vagrant plugin install vagrant-vbguest
vagrant plugin install vagrant-hostsupdater

To start the Vagrant environment for selfmedicate, run:

vagrant up

Once this is done, the environment should be ready to access at the URL shown by the script.

The Selfmedicate Script

In the last section, we started a Vagrant machine with all of the prerequisites installed for running the Antidote platform. In this section, we’ll dive a little bit into the selfmedicate tool specifically, so you are able to use it to iterate on lesson content and quickly preview the changes you’ve made.

These instructions assume you’ve followed the previous section, and now have a running Vagrant machine. If not, please do that now before continuing.

Open an SSH connection to the Vagrant machine:

vagrant ssh

The rest of the selfmedicate instructions will take place within this environment.

The selfmedicate.sh script is our one-stop shop for managing the development environment. This script has several subcommands:

./selfmedicate.sh -h
Usage: selfmedicate.sh <subcommand> [options]
Subcommands:
 start Start local instance of Antidote
 reload Reload Antidote components
 stop Stop local instance of Antidote
 resume Resume stopped Antidote instance

options:
-h, --help show brief help

In rare circumstances, you might need to run the start, stop, or resume commands. However, these commands have been wired up to the Vagrant environment in such a way that this shouldn’t be necessary.

The main command you’ll probably want to run within the Vagrant environment is the reload subcommand. This allows Antidote to re-import curriculum content:

./selfmedicate reload

Troubleshooting Self-Medicate

The vast majority of all setup activities are performed by the selfmedicate script. The idea is that this script shoulders the burden of downloading all the appropriate software and building is so that you can quickly get to focusing on lesson content. However, issues can still happen. This section is meant to direct you towards the right next steps should something go wrong and you need to intervene directly.

The selfmedicate script is designed to make it easy to configure a local minikube environment with everything related to Antidote installed on top. However, you’ll always be well-served by becoming familiar with minikube or even Kubernetes itself so that you are more able to troubleshoot the environment when things go wrong.

Before asking for help, please first answer these questions:

	Have you read this page in its entirety?

	Have you run a git pull on the latest master branch of the Self-Medicate and Curriculum repos?

	Have you looked at the Common Selfmedicate Issues?

If you answered “yes” to all of these questions, please open an issue on the selfmedicate repository [https://github.com/nre-learning/antidote-selfmedicate/issues/new] and ensure you follow the instructions provided there.

The self-medicate tool comes with a debug subcommand which runs a series of commands for extracting information that will be needed for any troubleshooting activity. To run this subcommand and place all output in a file called selfmedicatedebug.txt, run the below:

./selfmedicate.sh debug > selfmedicatedebug.txt

When opening an issue on the Self-Medicate repository linked above, this information will be required to move forward with troubleshooting any issues, so please create a new Github Gist [https://gist.github.com/] and paste the link into the relevant spot in your issue. Please do not paste the debug contents into a Github Issue directly.

Common Self-Medicate Issues

All of the steps below assume a working Vagrant environment, and a working persistent connection to this virtual machine via vagrant ssh.

Cannot Connect to the Web Front-End

It’s likely that the pods for running the Antidote platform aren’t running yet. Try getting the current pods:

~$ kubectl get pods
NAME READY STATUS RESTARTS AGE
antidote-web-99c6b9d8d-pj55w 2/2 Running 0 12d
nginx-ingress-controller-694479667b-v64sm 1/1 Running 0 12d
syringe-fbc65bdf5-zf4l4 1/1 Running 4 12d

You should see something similar to the above. The exact pod names will be different, but you should see the same numbers under the READY column, and all entries under the STATUS column should read Running as above.

In some cases the STATUS column may read ContainerCreating. In this case, it’s likely that the images for each pod is still being downloaded to your machine. You can verify this by “describing” the pod that’s not Ready yet:

kubectl describe pods -n=kube-system kube-multus-ds-amd64-ddxqc
Name: kube-multus-ds-amd64-ddxqc
....truncated....
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 19s default-scheduler Successfully assigned kube-system/kube-multus-ds-amd64-ddxqc to minikube
Normal Pulling 17s kubelet, minikube pulling image "nfvpe/multus:latest"

In this example, we’re still waiting for the image to download - the most recent event indicates that the image is being pulled. The selfmedicate.sh script has some built-in logic to wait for these downloads to finish before moving to the next step, but in case that doesn’t work, this can help you understand what’s going on behind the scenes.

If you’re seeing something else, it’s likely that something is truly broken, and you likely won’t be able to get the environment working without some kind of intervention. Please open an issue on the antidote-selfmedicate repository [https://github.com/nre-learning/antidote-selfmedicate/issues/new] with a full description of what you’re seeing.

Lesson Times Out While Loading

Let’s say you’ve managed to get into the web front-end, and you’re able to navigate to a lesson, but the lesson just hangs forever at the loading screen. Eventually you’ll see some kind of error message that indicates the lesson timed out while trying to start.

This can have a number of causes, but one of the most common is that the images used in a lesson failed to download within the configured timeout window. This isn’t totally uncommon, since the images tend to be fairly large, and on some internet connections, this can take some time.

There are a few things you can try. For instance, kubectl describe pods <pod name>, as used in the previous section, can tell you if a given pod is still downloading an image.

We can also use docker commands to check the list of docker images that have been successfully pulled:

docker image list

Jupyter Notebooks

This guide is meant to help learners understand how to use Jupyter-based lesson guides within a lesson. If you’re a content author that wishes to know more about using Jupyter notebooks in your lesson, please see “Writing Lab Guides with Jupyter Notebooks”.

If you encounter a jupyter notebook within a lesson, you might be initially overwhelmed with the number of buttons and options. Don’t worry about that - you really only need to know a few key things.

[image: ../_images/jupyter.png]

The above image shows the toolbar for a jupyter notebook. You’ll find this immediately below the dropdown selector where you can navigate between the labs within a lesson. The main thing you will use here is the “run” button. This is what allows you to execute a selected snippet of code. For instance, in the below image, we have a python snippet embedded in the lab guide. We’ve selected it, and can execute the code within using this “run” button:

[image: ../_images/jupyter_selected.png]

Depending on the snippet, you might see some output below.

[image: ../_images/jupyter_output.png]

Note that you might not get any output. This depends on whether or not the code being executed is meant to produce output, and/or how long it takes to process the instruction.

Also note that most jupyter notebooks expect that you’ll run all of the snippets in order. Not doing this might result in some errors. Just follow the instructions in the lab guide if you get stuck.

Finally, you can edit the contents of a notebook! The text and code provided is just part of the lab, but the great thing about jupyter notebooks is that you can play around with them, and download a modified version.

[image: ../_images/jupyter_edit.png]

Play around with editing the code provided and running it again! Experiment and learn!

Tips and FAQs

How are you running network devices in this thing?

Everything in Antidote is executed in Kubernetes, so everything has to be a container. On the surface, this may seem like a barrier to being able to run virtual networking images, which are commonly available as virtual machines. Indeed, a common misconception is that the two models are mutually exclusive, but they’re not.

At the end of the day, a container is just a highly configured process, and QEMU can execute virtual machines easily with a single command. We build all of this into a container image, so that in essence, when the container is started, the virtual machine is started as well.

See :ref:architecture <architecture> for more details on this and other aspects of images within Antidote.

Do you only support Junos?

Definitely not. In fact, the underlying Antidote platform doesn’t care at all what operating system a lesson endpoint uses, only that it’s accessible via the ports described in a Presentation.

As of v1.1.0 [https://github.com/nre-learning/nrelabs-curriculum/releases/tag/v1.1.0], the NRE Labs curriculum includes and makes use of a Cumulus VX image as well, and we have plans to add even more in the near future. Any other networking vendor that is interested in donating a virtual image for their kit and is willing to abide by the project’s governance document [https://github.com/nre-learning/proposals/blob/master/governance] and the code of conduct [https://github.com/nre-learning/proposals/blob/master/codeofconduct] is welcome to participate in the project.

 _images/branchchanges.png
¥ Mierdin / nrelabs-curriculum ©Watch~ 0 dksStar 0 YFork 38

forked from nre-learning/nrelabs-curriculum

¢ Code 7 Pull requests 0 Projects 0 Wiki Security Insights £ Seftings
@ Leam network automation with real network devices, all in your browser. Edit
Manage topics
@ 809 commits ¥ 12 branches © 8 releases 22 13 contributors s Apache-2.0

‘Your recently pushed branches:

 new-branch-name (less than a minute ago) 1" Compare & pull request
Newputreest Creseewte Uposates Foarie

This branch is 1 commit ahead of nre-learning:master.

B Merain A oobar = e o= AT S

_images/complexitylabels.png
complex

gh
complexity: low

complexity: medium

_images/antidote-architecture.png
Curriculum NRE

A standalone repository of interactive content (lessons, etc.)
managed “as-code” in Git

Antidote Platform

Provides an on-demand, interactive learning experience in the browser.
Makes a specified curriculum available to users

Provides a stable, well-understood API that the Antidote platform @
uses for provisioning lesson resources on-demand.

Infrastructure

Any compute infrastructure you can run Kubernetes on,
such as laaS, Bare-Metal, or On-Prem VM infra

_images/antidote_hla.png
Antidote Architectural Overview

Curriculum or others...
Platform syringe —>|antidote-web
Kubernetes
Infrastructure
Google Cloud (GCE)

_images/fork.png
& nre-learning / nrelabs-curi

ulum ©uUnwatch~ 14 | J Unstar | 81

¢ Code (0 Issues 38 Pull requests 5 Security Insights £ Seftings

Lear network automation, all in your browser. htips:/labs.networkreliability.engin...

Manage topics

@ 808 commits 15 branches © 13 releases 22 16 contributors s Apache-2.0

Branch:master~ | New pull request Createnewfile Uploadfiles FindFile | [Rel LTIt S

_images/issuetab.png
& nre-learning / nrelabs-curriculum

¢>Code () lssues 38 |7 Pull requests

_images/curriculum_target.png
Platform

NRE Labs
Curriculum

v0.4.0

v0.5.0

v1.0.0

v1.1.0

v1.2.0

_images/curriculum_target1.png
Platform

NRE Labs
Curriculum

v0.4.0

v0.5.0

v1.0.0

v1.1.0

v1.2.0

_images/jupyter.png
1 - Get device facts

" jupyter notebook a
File Edit View Insert Cell Kernel Help Not Trusted | Pythons ©
+ x @ B A ¥ MRin B C W | Markdown P =

Multi-Vendor Network Automation with
NAPALM

Part 1 - Get Device Facts

This lesson uses Jupyter notebooks to provide a guided experience with
in-line. executable and editable code snippets. Read here for more details

_images/jupyter_edit.png
aeavice.openy)

Now that the connection to this device is open, we can run the get_facts () function
1o print a list of retrieved device facts (This can take a few seconds, be patient).

In [11]: print("I am in control no

I an in control now!

That's a simple *hello, world!" style example. In the following labs, we'll explore other

_images/jupyter_output.png
File Edit View Inset Cell Kemel Help Not Trusted | Python3 O

+ % @ B A ¢ MR B C W[Code i =
We can initiate the connection to the device with a call to device.open() :

In [9]: device.open()

Now that the connection to this device is open, we can run the get_facts () function
1o print a list of retrieved device facts (This can take a few seconds, be patient).

In [10]: device.get facts()

Out[10]: {'vendor': 'Juniper’,
‘model’s 'VOFX-10000,
‘serial number': '661784916418",
‘os_version': '15.1X53-D60.4",
‘hostname': 'vafxl',
‘fgdn': 'Nonme',
‘uptime': 1246,

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/lessonsnetworking.png
Pods
Networks

_images/nrelabs-large-onblack.png

_images/jupyter_selected.png
+ % @B+ C | » | code

[}

NAPALM is a Python project that abstracts all of these to a common set of functions. In
this lesson, we'll use this library to interact with our network devices.

In order to work with our network device via NAPALM, we need to first import the library.
This is done with a simple import statement:

In [7]: import napalm

Next, we want to call napalm's get network driver function, and pass in the

_images/lessons_hla.png
Router

syringe

‘ " _endpoint POD
\\learner 1 namespac

Router

applications

k8s

endpoint POD

engine

/ilearner 2 namespace

applications|

‘linuxl

<>

Linux
applications

_.endpoint POD

_images/pullrequest.png
& nre-learning / nrelabs-curriculum ©unwatch~ 14 K Unstar 81 YFork 38

¢ Code Issues 38 Pull requests 5 Security Insights £ Seftings

Open a pull request
Create a new pull request by comparing changes across two branches. If you need to, you can also compare across forks.
U1 | base reposiory: nre-learninginrelabs-curricul... ~ | base:master~ |

head repository: Mierdin/nrelabs-curriculum + || compare: new-branch-name ~ | Able to merge. These branches can be automatically merged.

! ‘Added a cool new lesson! Reviewers

No reviews—atleast 1 approving
@R &~ | reviewisrequired

Write | Preview MBi KO

‘Summarize the change here, and let folks know if it is meant to close any open issues. Assignees
No one—assign yourselt

Labels

None yet

Projects
4| Noneyet
Attach files by ragging & dropping selecting or pasting them

Mikestone
(¥ Allow edits from maintainers. Learn more. Create pull request
No milesione

¥ Create pull request
Open a pullrequest hatis ready for review
o 1 commit

1 file changed 221 contributor

Create draft pull request

Cannot be merged until marked ready for

Bl Commits on Jun 16, 2019

B¥ Mierdin Added foobar Veded| 041fbed

_images/redhat.png
Red Hat

Red Hat is the world's leading provider of enterprise open source solutions, using a community-powered
approach to deliver high-performing Linux, cloud, container, and Kubernetes technologies. We help you
standardize across environments, develop cloud-native applications, and integrate, automate, secure,

and manage complex environments with award-winning support, training, and consulting services.

Type vendor
Website https://www.redhat.com
Email customerservice@redhat.com

Lessons

Ansible for Network Automation

In this lesson, we'll explore the use of Ansible for multi-vendor network automation

_images/ptr_process.png
New Curriculum
Contribution
(Pull Request)

Automated
Testing and
Peer Review

Merge to
“master”
branch

Nightly
deployment
to PTR

R

Any j
necessary

changes

_images/ptr_process1.png
New Curriculum
Contribution
(Pull Request)

Automated
Testing and
Peer Review

Merge to
“master”
branch

Nightly
deployment
to PTR

R

Any j
necessary

changes

_images/screenshot-from-2020-04-20-15-45-57.png
Q This pull request is still a work in progress

Ready for review
Draft pull requests cannot be merged.

Some checks were not successful Hide all checks
1 errored and 1 successful checks

X contiuous-ntegrationtravis-cifpush —The Travis G bl could 1ot cor. Detals

v % DCO Successtulin 25— DCO Details

Merge pull request | ~ | o view command ine instructions.

_images/screenshot-from-2020-06-12-15-03-17.png
NRE rome avout Resources Blogs Find Lesson Content

RE Labs In The Wild
As a community-powered hub for advancing network engineering and automation skill-sets, NRE Labs has been prominently featured in blogs, podcasts, case studies and publications all across the
industry.

-

Blogs Publications Podcasts

Introducing NRE Labs Case Study: NRE Labs on Packet The CloudCast

Juniper and NRE Labs at NFD20 Network World Packet Pushers: Priority Queue

NFD20 - Juniper's Hedging Their Bets clo.com Datanauts

NFD20 - Juniper and NRE Labs Network Break

Creating Lessons for the Antidote Network Emulator

Community platform for learning and teaching
automation and Network Reliability Engineering

* Totally browser-based
— i

_images/stages.png
configuration provisioning using PyEZ.

| pan3 |

0

_static/comment-bright.png

_images/watch.png
& nre-learning / nrelabs-curriculum

¢ Code (0 Issues 38 Pull requests 5 Security Insights

©uUnwatch~ | 14 Unstar 81

Settings.

Lear network automation, all in your browser. htips:/labs.networkreliability.engin...

Manage topics

@ 808 commits. 15 branches. © 13 releases

Branch:master~ | New pull request

B Werdin Mergo branch mastr o github comave-eamingrelabs-curfouum

Creat

Notifications

Not watching
Be notified only when partcpating or
@mentioned.

Releases only
Be notified of new releases, and when
participating or @mentioned.

¥ Watching
Be noliied of all conversafions,

Ignoring
Never be noifed.

$Fo

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_images/4b-build-success-details.png
& nre-learning / nrelabs-curriculum @Unwatch ~ 21 gy Unstar 120 ggFok 71

<> Code () lssues @ 1y Pullrequests 5 () Acons [Projects 1 [0 Wiki () Security |~ Insights & Sefiings

WIP suzieq lesson and image #357 et | openuin -

(') Mierdin wants to merge 2 commits into nre-Llearning:master ffom ierdin:suzieq-lesson-inage (2

©) Comversation 0 - Commits 2 Checks 8 [Files changed 13 +191-0
° Merge branch 'master’ into suzieq-lesson-image 73d2eb6 ~ © Renunjobs +
.a GitHub Actions / nrelabs-preview
on: pull_request_target succeeded 10 minutes ago in 4m 485
rebuild — . . "
7 Preview is ready! Click 'Details’ to continue.
+ logins

Your content is ready to be previewed, and is available at the link below:
+ build_image (suzieq)

Open Preview
+ retag_images

Note that this is fuly-deployed version of the main NRE Labs site, but includes the changes you've made in
v deploy_preview this branch. Once you navigate to the site above, use the lesson catalog or other site navigation to find the content

youve added/changed
a nrelabs-preview-logs

7 For more information, see the NRE Labs documentation.
v nrelal

> DCO DETAILS

Some additional tools for you to use can be found below:

« Jaeger Traces (for troubleshooting lesson startup, etc)

2 View more detalls on GitHub Actions

_images/5-prebuild-failed.png
Review required
Atleast 1 approving review is required by reviewers with write access. Leam more.

o Some checks were not successful Hide all checks
1 failing, 4 skipped, and 1 successful checks
x Cl/ prebuild (pull_request_target) Failing after 20s — prebuild Details
@ Cl/logins (pull_request target) Skipped Details
© I/ build_image (pull_request_target) Skipped Details
@ Cl/ retag_images (pull_request target) Skipped Details
© 11/ deploy_preview (pull_request target) Skipped Details

~ & DpCO—DCO Details

_images/3-building.png
#7) This pull request s still a work in progress
Draft pull requests cannot be merged.

Ready for review

Some checks haven’t completed yet Hide all checks

3 successful and 4 in progress checks
(@) Cl/logins (pull_request_target) Successiul in 225 Details
. I/ build_image (suzieq) (pull_request_target) I progress— This check has started. Details
. Cl/ retag_images (pull_request target) In progress — This check has started. Details
. I/ nrelabs-preview (pull_request _target) /1 progress — Preview is being provisioned. Details
. Cl/ nrelabs-preview-logs (pull_request_target) In progress — Preview is being provisioned. Details
v % DCo—DCO Details

lrequest |~ | orview command line instructions.

_images/4-build-success.png
All checks have passed Hide all checks
7 successful and 1 neutral checks

(@) Cl/build_image (suzieq) (pull_request target) Successtulin 3m Details
v Cl/ retag_images (pull_request target) Successfulin 175 Details
v Cl/ deploy_preview (pull_request target) Successful in 27 Details
. Cl/ nrelabs-preview-logs (pull_request_target) Completed in 5m — Preview Provisioning Logs 2. Details
v Cl/ nrelabs-preview (pull_request target) Successful in 5m — Preview is ready! Click ‘Details't 1 .etais
v % DCo—DCO Details

ull ~ | orview command line instructions.

_images/7-image-build-failed-details.png
WIP suzieq lesson and image #357 i -

PR Mierdin wants to merge 2 commits into nre-Learning:master from ierdin:suzi

onversa ommits 2) Checks 7 Files changed

) Merge branch ‘master’ into suzieq-lesson-image &

> DCO build_image (suzieq)

cl
on: pull_requ > @ Setupjob
> @ Runactionslcheckout@vz
prebuild
> @ Checkout PR
logins °
= B) > @ Loginto DockerHub
et v © Buidimage in 445
deploy_preview » Run cd inages/suzieq && make dockerfast TARGET VERSION=preview-xpzsknd
docker build --pull -t antidotelabs/suzieq:preview-xpzsknd
nrelabs-preview Sending build context to Docker daemon 8.704kE
nrelabs-preview-logs Step 1/24 : FROM netenglabs/suzieq:8.9

0.9: Pulling from netenglabs/suzieq
6ec7b7d16202: Pulling fs layer
80ff6536004b: Pulling fs layer
6c5103836295: Pulling fs layer
6ce844041580: Pulling fs layer
6€0017327045: Pulling fs layer
8b18ebacs98d: Pulling fs layer
9e2a3dadaab2: Pulling fs layer
069a0870374: Pulling fs layer
215b1856baeb: Pulling fs layer
2f11eb0d3764: Pulling fs layer
6bca8fadb916: Pulling fs layer
b1fd257137b2: Pulling fs layer
9ea2ffag9aar: Pulling fs layer
5c4017d991d4: Pulling fs layer
48091cT14d75: Pulling fs layer
ab32436ebdf6: Pulling fs layer
1acg68fcehia: Pulling fs layer
6ce84404158b: Waiting
60017327b45: Waiting
8b18ebacs98d: Waiting
9e2a3dabaah2: Waiting
069a0870374: Waiting

_images/0-build-status.png
& nre-learning / nrelabs-curriculum

<> Code () lssues 8 1 Pullrequests 5 (O Actons [1] Projects 1[I Wiki

WIP suzieq lesson and image #357

JRYRBURY) Mierdin wants to merge 1 commitinto nre-learning:master from Mierdin:suzieq-lesson-inage (%)

@ Comersation 0 o Commits 1

’ Mierdin commented now

No description provided.

Checks 0

[Files changed 12

o @ VTP suzieq lesson and tnage =

Add more commits by pushing to the suzieq-lesson-inage branch on Mierdin/nrelabs-curriculum

#7) This pull request s still a work in progress
Draft pul requests cannot be merged.

Some checks haven't completed yet
1 in progress and 1 successful checks

I/ prebuild (pull_request target) I progress — This check has started.

v % DCoO—DCO

Merge pull request |~

e .

Leave a comment

or view command fine instructions.

Preview H B T

Attach files by dragging & dropping, selecting or pasting them.

@ Unwatch ~
© Secuity |~ Insights
Member | © -+

Verlled | ® bcosbo3

Ready for review

Hide all checks

Details

Details

@ U «-

oo o

(® Remember, contributions o s reposiory shoud folow s conirauing quidelnes

